In order to accommodate the variety of algorithms with different performance in specific application and improve power efficiency,reconfigurable architecture has become an effective methodology in academia and industr...In order to accommodate the variety of algorithms with different performance in specific application and improve power efficiency,reconfigurable architecture has become an effective methodology in academia and industry.However,existing architectures suffer from performance bottleneck due to slow updating of contexts and inadequate flexibility.This paper presents an H-tree based reconfiguration mechanism(HRM)with Huffman-coding-like and mask addressing method in a homogeneous processing element(PE)array,which supports both programmable and data-driven modes.The proposed HRM can transfer reconfiguration instructions/contexts to a particular PE or associated PEs simultaneously in one clock cycle in unicast,multicast and broadcast mode,and shut down the unnecessary PE/PEs according to the current configuration.To verify the correctness and efficiency,we implement it in RTL synthesis and FPGA prototype.Compared to prior works,the experiment results show that the HRM has improved the work frequency by an average of 23.4%,increased the updating speed by 2×,and reduced the area by 36.9%;HRM can also power off the unnecessary PEs which reduced 51%of dynamic power dissipation in certain application configuration.Furthermore,in the data-driven mode,the system frequency can reach 214 MHz,which is 1.68×higher compared with the programmable mode.展开更多
The objective of this study is to investigate the biomechanical functions of the human ankle-toot complex during the stancephase of walking. The three-dimensional (3D) gait measurement was conducted by using a 3D infr...The objective of this study is to investigate the biomechanical functions of the human ankle-toot complex during the stancephase of walking. The three-dimensional (3D) gait measurement was conducted by using a 3D infrared multi-camera system anda force plate array to record the Ground Reaction Forces (GRF) and segmental motions simultaneously. The ankle-foot complexwas modelled as a four-segment system, connected by three joints: talocrural joint, sub-talar joint and metatarsophalangeal joint.The subject-specific joint orientations and locations were determined using a functional joint method based on the particleswarm optimisation algorithm. The GRF moment arms and joint moments acting around the talocrural and sub-talar joints werecalculated over the entire stance phase. The estimated talocrural and sub-talar joint locations show noticeable obliquity. Thekinematic and kinetic results strongly suggest that the human ankle-foot complex works as a mechanical mechanism with twodifferent configurations in stance phase of walking. These lead to a significant decrease in the GRF moment arms therebyincreasing the effective mechanical advantages of the ankle plantarflexor muscles. This reconfigurable mechanism enhancesmuscle effectiveness during locomotion by modulating the gear ratio of the ankle plantarflexor muscles in stance. This studyalso reveals many factors may contribute to the locomotor function of the human ankle-foot complex, which include not only itsre-configurable structure, but also its obliquely arranged joints, the characteristic heel-to-toe Centre of Pressure (COP) motionand also the medially acting GRF pattern. Although the human ankle-foot structure is immensely complex, it seems that itsconfiguration and each constitutive component are well tuned to maximise locomotor efficiency and also to minimise risk ofinjury. This result would advance our understanding of the locomotor function of the ankle-foot complex, and also the intrinsicdesign of the ankle-foot musculoskeletal structure. Moreover, this may also provide implications for the design of bionicprosthetic devices and the development of humanoid robots.展开更多
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
With the development of intelligent flexible manufacturing,traditional industrial manipulators with a single configuration are difficult to meet a variety of tasks.Reconfigurable robots have developed rapidly which co...With the development of intelligent flexible manufacturing,traditional industrial manipulators with a single configuration are difficult to meet a variety of tasks.Reconfigurable robots have developed rapidly which could change their configurations and end effectors for different tasks.The reconfigurable connecting mechanism(RCM)is a core component of reconfigurable robots.In this paper,two types of intelligent modularized RCMs with light weight,high payload,and large pose(position and attitude)error tolerance are developed.One is driven by shape memory alloy(SMA)and recovery spring.It is locked by steel balls and key.The other is driven by electromagnetic coil and locked by permanent magnet and key.The locking principle,mechanical system and control system of the two RCMs are detailed introduced.Both of them meet the requirements of high precision and high payload in the industrial field.Finally,the developed RCMs are respectively integrated to a practical robot and experimented.The experiment results verified the performance of the two RCMs.展开更多
With the development of science and technology and with space exploration, hazardous environment work, and production requirements of small batch and quick change-over, the traditional concept of mechanisms and robots...With the development of science and technology and with space exploration, hazardous environment work, and production requirements of small batch and quick change-over, the traditional concept of mechanisms and robots development is facing a challenge in the 21 st century for adaptability and reconfigurability.展开更多
This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric...This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric mechanism of this novel reconfigurable mechanism is obtained in combination with the isomerization method.The geometrically constrained conditions result in variable motion branches of the mechanism.Based on the singular value decomposition of the Jacobian matrix,the motion branches and branch bifurcation characteristics are analyzed,and the schematics of bifurcations in joint space is derived.This novel 6R linkage features one Goldberg 6R motion branch,two line-symmetric Bricard 6R motion branches,and one Bennett motion branch.With regards to the line-symmetric Bricard 6R motion branches,a similar function for the disassembly and recombination process can be achieved by reconstructing an intermediate configuration through bifurcation.Then,the isomerized generalized variant Goldberg 6R linkage is explicated in a similar way.Acting as a bridge,reconfigurability connects two families of overconstrained mechanisms.展开更多
To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation mo...To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.展开更多
This paper presents the idea of constructing reconfigurable limbs by integrating metamorphic linkages as subchains.The planar five-bar metamorphic linkages that have three phases resulting from locking of motors are c...This paper presents the idea of constructing reconfigurable limbs by integrating metamorphic linkages as subchains.The planar five-bar metamorphic linkages that have three phases resulting from locking of motors are considered.Under the assumption that the constraint exerted by the reconfigurable limb can switch between no constraint,a constraint force,and a constraint couple,the output motions of the metamorphic linkage in its two planar four-bar linkage phases are identified.By adding an appropriate joint to planar four-bar linkages with translational output,four planar five-bar linkages that can be employed in the construction of reconfigurable limbs are enumerated.Serial chains that can provide a constraint couple and a constraint force are synthesized based on screw theory.Reconfigurable limbs that have three configurations associated with the three distinct phases of the metamorphic linkages are assembled with planar five-bar metamorphic linkages and serial chains with four degrees of freedom.A class of reconfigurable parallel mechanisms are constructed by connecting a moving platform and a base with three identical reconfigurable limbs.The degrees of freedom of the reconfigurable parallel mechanism in different configurations with the metamorphic linkages in different phases are given.Finally,the actuation scheme for this kind of mechanisms is addressed.展开更多
Different from limb rehabilitation training,the purpose of muscle strength training is to reduce muscle atrophy and increase muscle strength and tolerance through strength training of limb muscles,and then improve the...Different from limb rehabilitation training,the purpose of muscle strength training is to reduce muscle atrophy and increase muscle strength and tolerance through strength training of limb muscles,and then improve the muscle strength level of muscles(groups),mainly for sports fitness and muscle strengthening groups and patients with muscle atrophy or muscle weakness caused by various diseases.In this paper,we developed a new reconfigurable muscle strength training robot,a bionic robot by imitating physicians to conduct muscle strength training for patients,which was developed with six training modes for 17 joint movements,that is,the shoulder flexion/extension,the shoulder internal/external rotation,the shoulder adduction/abduction,the elbow flexion/extension,the wrist supination/pronation,the wrist flexion/extension,the wrist radial/ulnar deviation,the hip flexion/extension,the hip internal/external rotation,the hip adduction/abduction,the knee flexion/extension,the ankle dorsiflexion/plantarflexion,the ankle adduction/abduction,the ankle inversion/eversion,the waist flexion/extension,the waist left/right rotation,and the waist left/right flexion.The reconfigurable mechanism was designed with fully electric adjuster and reconfigurable adaptors deployed on the driving unit,and six training modes were developed,namely,continuous passive motion,active exercise,passive–active exercise,isotonic exercise,isometric exercise and isokinetic exercise.Experiments with knee joint and elbow joint have shown that the developed reconfigurable muscle strength training robot can realize the multi-mode trainings for the 17 joint movements.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61834005, 61602377, 61772417, 61802304, 61874087)the Shaanxi International Science and Technology Cooperation Program No. 2018KW-006+1 种基金Shaanxi Provincial Key R&D Plan under Grant No. 2017GY-060Shaanxi Province Co-ordination Innovation Project of Science and Technology under Grant No. 2016KTZDGY02-04-02
文摘In order to accommodate the variety of algorithms with different performance in specific application and improve power efficiency,reconfigurable architecture has become an effective methodology in academia and industry.However,existing architectures suffer from performance bottleneck due to slow updating of contexts and inadequate flexibility.This paper presents an H-tree based reconfiguration mechanism(HRM)with Huffman-coding-like and mask addressing method in a homogeneous processing element(PE)array,which supports both programmable and data-driven modes.The proposed HRM can transfer reconfiguration instructions/contexts to a particular PE or associated PEs simultaneously in one clock cycle in unicast,multicast and broadcast mode,and shut down the unnecessary PE/PEs according to the current configuration.To verify the correctness and efficiency,we implement it in RTL synthesis and FPGA prototype.Compared to prior works,the experiment results show that the HRM has improved the work frequency by an average of 23.4%,increased the updating speed by 2×,and reduced the area by 36.9%;HRM can also power off the unnecessary PEs which reduced 51%of dynamic power dissipation in certain application configuration.Furthermore,in the data-driven mode,the system frequency can reach 214 MHz,which is 1.68×higher compared with the programmable mode.
基金the Structure and Motion Lab,University of LondonCentre for Robotics Research at King's College London+1 种基金BBSRC for their support from grant number BB/H003142/1supported by the Royal Thailand Government
文摘The objective of this study is to investigate the biomechanical functions of the human ankle-toot complex during the stancephase of walking. The three-dimensional (3D) gait measurement was conducted by using a 3D infrared multi-camera system anda force plate array to record the Ground Reaction Forces (GRF) and segmental motions simultaneously. The ankle-foot complexwas modelled as a four-segment system, connected by three joints: talocrural joint, sub-talar joint and metatarsophalangeal joint.The subject-specific joint orientations and locations were determined using a functional joint method based on the particleswarm optimisation algorithm. The GRF moment arms and joint moments acting around the talocrural and sub-talar joints werecalculated over the entire stance phase. The estimated talocrural and sub-talar joint locations show noticeable obliquity. Thekinematic and kinetic results strongly suggest that the human ankle-foot complex works as a mechanical mechanism with twodifferent configurations in stance phase of walking. These lead to a significant decrease in the GRF moment arms therebyincreasing the effective mechanical advantages of the ankle plantarflexor muscles. This reconfigurable mechanism enhancesmuscle effectiveness during locomotion by modulating the gear ratio of the ankle plantarflexor muscles in stance. This studyalso reveals many factors may contribute to the locomotor function of the human ankle-foot complex, which include not only itsre-configurable structure, but also its obliquely arranged joints, the characteristic heel-to-toe Centre of Pressure (COP) motionand also the medially acting GRF pattern. Although the human ankle-foot structure is immensely complex, it seems that itsconfiguration and each constitutive component are well tuned to maximise locomotor efficiency and also to minimise risk ofinjury. This result would advance our understanding of the locomotor function of the ankle-foot complex, and also the intrinsicdesign of the ankle-foot musculoskeletal structure. Moreover, this may also provide implications for the design of bionicprosthetic devices and the development of humanoid robots.
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1304600)Guangdong Provincial Key Research and Development Program of China(Grant No.2019B090915001)+1 种基金Guangdong Provincial Special Support Program of China(Grant No.2017TX04X0071)Basic Research Program of Shenzhen City(Grant No.JCYJ20180507183610564).
文摘With the development of intelligent flexible manufacturing,traditional industrial manipulators with a single configuration are difficult to meet a variety of tasks.Reconfigurable robots have developed rapidly which could change their configurations and end effectors for different tasks.The reconfigurable connecting mechanism(RCM)is a core component of reconfigurable robots.In this paper,two types of intelligent modularized RCMs with light weight,high payload,and large pose(position and attitude)error tolerance are developed.One is driven by shape memory alloy(SMA)and recovery spring.It is locked by steel balls and key.The other is driven by electromagnetic coil and locked by permanent magnet and key.The locking principle,mechanical system and control system of the two RCMs are detailed introduced.Both of them meet the requirements of high precision and high payload in the industrial field.Finally,the developed RCMs are respectively integrated to a practical robot and experimented.The experiment results verified the performance of the two RCMs.
文摘With the development of science and technology and with space exploration, hazardous environment work, and production requirements of small batch and quick change-over, the traditional concept of mechanisms and robots development is facing a challenge in the 21 st century for adaptability and reconfigurability.
基金Projects(51535008,51721003)supported by the National Natural Science Foundation of ChinaProject(B16034)supported by the Program of Introducing Talents of Discipline to Universities(“111 Program”),China。
文摘This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric mechanism of this novel reconfigurable mechanism is obtained in combination with the isomerization method.The geometrically constrained conditions result in variable motion branches of the mechanism.Based on the singular value decomposition of the Jacobian matrix,the motion branches and branch bifurcation characteristics are analyzed,and the schematics of bifurcations in joint space is derived.This novel 6R linkage features one Goldberg 6R motion branch,two line-symmetric Bricard 6R motion branches,and one Bennett motion branch.With regards to the line-symmetric Bricard 6R motion branches,a similar function for the disassembly and recombination process can be achieved by reconstructing an intermediate configuration through bifurcation.Then,the isomerized generalized variant Goldberg 6R linkage is explicated in a similar way.Acting as a bridge,reconfigurability connects two families of overconstrained mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.51735009)State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008)National Aerospace Science Foundation of China(040102).
文摘To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.
基金supported by the National Natural Science Foundation of China(Grant Nos.51075025,51175029)Beijing Natural Science Foundation of China(Grant No.3132019)the Program for New Century Excellent Talents in University of China(Grant No.NCET-12-0769)
文摘This paper presents the idea of constructing reconfigurable limbs by integrating metamorphic linkages as subchains.The planar five-bar metamorphic linkages that have three phases resulting from locking of motors are considered.Under the assumption that the constraint exerted by the reconfigurable limb can switch between no constraint,a constraint force,and a constraint couple,the output motions of the metamorphic linkage in its two planar four-bar linkage phases are identified.By adding an appropriate joint to planar four-bar linkages with translational output,four planar five-bar linkages that can be employed in the construction of reconfigurable limbs are enumerated.Serial chains that can provide a constraint couple and a constraint force are synthesized based on screw theory.Reconfigurable limbs that have three configurations associated with the three distinct phases of the metamorphic linkages are assembled with planar five-bar metamorphic linkages and serial chains with four degrees of freedom.A class of reconfigurable parallel mechanisms are constructed by connecting a moving platform and a base with three identical reconfigurable limbs.The degrees of freedom of the reconfigurable parallel mechanism in different configurations with the metamorphic linkages in different phases are given.Finally,the actuation scheme for this kind of mechanisms is addressed.
基金supported in part by the National Key R&D Program of China(No.2018YFB1307004)in part by the National Natural Science Foundation of China(Nos.61903011 and 52175001)。
文摘Different from limb rehabilitation training,the purpose of muscle strength training is to reduce muscle atrophy and increase muscle strength and tolerance through strength training of limb muscles,and then improve the muscle strength level of muscles(groups),mainly for sports fitness and muscle strengthening groups and patients with muscle atrophy or muscle weakness caused by various diseases.In this paper,we developed a new reconfigurable muscle strength training robot,a bionic robot by imitating physicians to conduct muscle strength training for patients,which was developed with six training modes for 17 joint movements,that is,the shoulder flexion/extension,the shoulder internal/external rotation,the shoulder adduction/abduction,the elbow flexion/extension,the wrist supination/pronation,the wrist flexion/extension,the wrist radial/ulnar deviation,the hip flexion/extension,the hip internal/external rotation,the hip adduction/abduction,the knee flexion/extension,the ankle dorsiflexion/plantarflexion,the ankle adduction/abduction,the ankle inversion/eversion,the waist flexion/extension,the waist left/right rotation,and the waist left/right flexion.The reconfigurable mechanism was designed with fully electric adjuster and reconfigurable adaptors deployed on the driving unit,and six training modes were developed,namely,continuous passive motion,active exercise,passive–active exercise,isotonic exercise,isometric exercise and isokinetic exercise.Experiments with knee joint and elbow joint have shown that the developed reconfigurable muscle strength training robot can realize the multi-mode trainings for the 17 joint movements.