Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the prob...Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.展开更多
Many networks in the real world have spatial attributes, such as location of nodes and length of edges, called spatial networks. When these networks are subject to some random or deliberate attacks, some nodes in the ...Many networks in the real world have spatial attributes, such as location of nodes and length of edges, called spatial networks. When these networks are subject to some random or deliberate attacks, some nodes in the network fail, which causes a decline in the network performance. In order to make the network run normally, some of the failed nodes must be recovered. In the case of limited recovery resources, an effective key node identification method can find the key recovering node in the failed nodes, by which the network performance can be recovered most of the failed nodes. We propose two key recovering node identification methods for spatial networks, which are the Euclidean-distance recovery method and the route-length recovery method. Simulations on homogeneous and heterogeneous spatial networks show that the proposed methods can significantly recover the network performance.展开更多
Dear Editor,We reported a case of a multidisciplinary therapy for late recovered facial paralysis 2y after the initial diagnosis.Facial paralysis has an incidence of 20-30 people out of 100000 per year,and up to 1 in ...Dear Editor,We reported a case of a multidisciplinary therapy for late recovered facial paralysis 2y after the initial diagnosis.Facial paralysis has an incidence of 20-30 people out of 100000 per year,and up to 1 in 60 people will be affected during their life time[1].展开更多
The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the re...The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the recoverable energy recycling efficiently.This energy of traditional excavator is lost in the form of heat energy,which is wasteful,and makes the component's temperature higher and higher to reduce the machine's life.Research on this system not only conforms to the current topic of energy crisis,but also mates with the actual engineering,so it is significant to research that.展开更多
Driving behavior modeling is very important in the research area of road traffic systems safety analysis. The characteristics of action of recovering from erroneous driving condition underlying road traffic accident o...Driving behavior modeling is very important in the research area of road traffic systems safety analysis. The characteristics of action of recovering from erroneous driving condition underlying road traffic accident or incident scenarios is quantitatively analyzed, the model of action of recovering from erroneous driving condition is set up according to the identification of erroneous driving condition and the measurement of correction from erroneous driving condition. And then, the probability of action of recovering from erroneous driving condition has been measured based on a revised decision tree. The measure process uses a combination of test data and subjective judgments of driving behavior. It can provide a very helpful theoretical basis for the further analysis of driving behavior in road traffic system.展开更多
The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties....The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties. 'Jing 411 ', 'Jinmai 47' and their 34 near isogenic lines (NILs) were used as test materials. Semi-automatic rainproof shelter and the percolating pools were used for simulating drought treat- ment. After suffering severe drought stress, winter wheat crops were rewatered at early jointing stage. The biomass accumulation after rewatering was determined as recovery ability index. In the meanwhile, plant height in the end of vegetative growth stage was measured, and WUE of varieties/lines was also determined. Thereafter, the differences in recovery ability, plant height and the population WUE, together with the correlation between recovery ability and population WUE were analyzed, respectively. The results showed that there were significant differences in recovery ability among some varieties/lines. The recovery ability was affected by both geno- type and environment, and the interaction existed in these two factors. Significant differences existed in plant height and population WUE among the 34 NILs along with their parents. There was a significantly positive correlation between recovery ability and plant height of varieties/lines. Recovery ability and plant height were very significantly and positively correlated with population yield WUE respectively. The re- sults indicated that recovery ability after drought stress-rewatering could be used as an evaluating index of population WUE under drought condition.展开更多
基金financially supported by National Natural Science Foundation of China(22038012,32172339,and 22178142)National Key Research and Development Program(2023YF D2100603)。
文摘Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.
基金Project supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23F030012)the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. GK229909299001-018)。
文摘Many networks in the real world have spatial attributes, such as location of nodes and length of edges, called spatial networks. When these networks are subject to some random or deliberate attacks, some nodes in the network fail, which causes a decline in the network performance. In order to make the network run normally, some of the failed nodes must be recovered. In the case of limited recovery resources, an effective key node identification method can find the key recovering node in the failed nodes, by which the network performance can be recovered most of the failed nodes. We propose two key recovering node identification methods for spatial networks, which are the Euclidean-distance recovery method and the route-length recovery method. Simulations on homogeneous and heterogeneous spatial networks show that the proposed methods can significantly recover the network performance.
基金Supported by the National Natural Science Foundation of China (No.82000938,No.81900906,No.82000857)。
文摘Dear Editor,We reported a case of a multidisciplinary therapy for late recovered facial paralysis 2y after the initial diagnosis.Facial paralysis has an incidence of 20-30 people out of 100000 per year,and up to 1 in 60 people will be affected during their life time[1].
基金supported by Science and Technology Research and Development Plan Project of Handan City(22422401138ZC)2022 School Level Project in Handan University(XZ2022203)。
文摘The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the recoverable energy recycling efficiently.This energy of traditional excavator is lost in the form of heat energy,which is wasteful,and makes the component's temperature higher and higher to reduce the machine's life.Research on this system not only conforms to the current topic of energy crisis,but also mates with the actual engineering,so it is significant to research that.
文摘Driving behavior modeling is very important in the research area of road traffic systems safety analysis. The characteristics of action of recovering from erroneous driving condition underlying road traffic accident or incident scenarios is quantitatively analyzed, the model of action of recovering from erroneous driving condition is set up according to the identification of erroneous driving condition and the measurement of correction from erroneous driving condition. And then, the probability of action of recovering from erroneous driving condition has been measured based on a revised decision tree. The measure process uses a combination of test data and subjective judgments of driving behavior. It can provide a very helpful theoretical basis for the further analysis of driving behavior in road traffic system.
文摘The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties. 'Jing 411 ', 'Jinmai 47' and their 34 near isogenic lines (NILs) were used as test materials. Semi-automatic rainproof shelter and the percolating pools were used for simulating drought treat- ment. After suffering severe drought stress, winter wheat crops were rewatered at early jointing stage. The biomass accumulation after rewatering was determined as recovery ability index. In the meanwhile, plant height in the end of vegetative growth stage was measured, and WUE of varieties/lines was also determined. Thereafter, the differences in recovery ability, plant height and the population WUE, together with the correlation between recovery ability and population WUE were analyzed, respectively. The results showed that there were significant differences in recovery ability among some varieties/lines. The recovery ability was affected by both geno- type and environment, and the interaction existed in these two factors. Significant differences existed in plant height and population WUE among the 34 NILs along with their parents. There was a significantly positive correlation between recovery ability and plant height of varieties/lines. Recovery ability and plant height were very significantly and positively correlated with population yield WUE respectively. The re- sults indicated that recovery ability after drought stress-rewatering could be used as an evaluating index of population WUE under drought condition.