The yttrium calcium oxyborate crystal(YCa_(4)O(BO_(3))_(3),YCOB)has been actively studied for hightemperature piezoelectric sensing applications.In this work,the stability of electric properties of YCOB crystal anneal...The yttrium calcium oxyborate crystal(YCa_(4)O(BO_(3))_(3),YCOB)has been actively studied for hightemperature piezoelectric sensing applications.In this work,the stability of electric properties of YCOB crystal annealed in critical conditions(high-temperatures of 900-1100℃ with a low oxygen partial pressure of 4×10^(-6) atm for 24 h)was investigated and the recovery mechanism for the electrical resisitivity,dielectric permittivity and dielectric loss were studied,taking advantage of the X-ray photoelectron spectra and the first principle calculations.The electrical resistivity of the annealed YCOB crystal was slightly decreased when compared to the pristine counterpart,being(2-5)×10^(7) Ω·cm at 850C.The dielectric permittivity and dielectric loss were found to increase after annealing,showing recoverable behaviours after thermal treatment above 650℃ in air.The calculated vacancy formation energy indicates that the oxygen vacancy is the dominant defects in YCOB.The formation of oxygen vacancy weakens the chemical bonding strength between B(Ca or Y)and O atoms,introduces extra donor levels in the band gap,which excites the electrons to conduction band more easily thus enhances the electrical conductivity and dielectric loss.The recovered electrical properties are believed to be associated with the reduced vacancy defects at elevated temperatures in air.展开更多
基金financially supported by the Primary Research&Development Plan of Shandong Province(2017CXGC0413)the National Natural Science Foundation of China(51872165).
文摘The yttrium calcium oxyborate crystal(YCa_(4)O(BO_(3))_(3),YCOB)has been actively studied for hightemperature piezoelectric sensing applications.In this work,the stability of electric properties of YCOB crystal annealed in critical conditions(high-temperatures of 900-1100℃ with a low oxygen partial pressure of 4×10^(-6) atm for 24 h)was investigated and the recovery mechanism for the electrical resisitivity,dielectric permittivity and dielectric loss were studied,taking advantage of the X-ray photoelectron spectra and the first principle calculations.The electrical resistivity of the annealed YCOB crystal was slightly decreased when compared to the pristine counterpart,being(2-5)×10^(7) Ω·cm at 850C.The dielectric permittivity and dielectric loss were found to increase after annealing,showing recoverable behaviours after thermal treatment above 650℃ in air.The calculated vacancy formation energy indicates that the oxygen vacancy is the dominant defects in YCOB.The formation of oxygen vacancy weakens the chemical bonding strength between B(Ca or Y)and O atoms,introduces extra donor levels in the band gap,which excites the electrons to conduction band more easily thus enhances the electrical conductivity and dielectric loss.The recovered electrical properties are believed to be associated with the reduced vacancy defects at elevated temperatures in air.