期刊文献+
共找到1,730篇文章
< 1 2 87 >
每页显示 20 50 100
Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization 被引量:16
1
作者 白菲菲 张早校 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期95-99,共5页
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen... Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively. 展开更多
关键词 recovery of low-level waste heat LNG cold energy utilization power generation cascade utilization
下载PDF
Application of the waste heat recovery system and energy-saving in the strip continuous annealing furnace
2
作者 WANG Lu 《Baosteel Technical Research》 CAS 2010年第2期23-28,共6页
The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an ... The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an example, several waste heat recovery systems in the annealing furnaces are compared and their advantages and disadvantages are analyzed through different energy-saving technologies. 展开更多
关键词 annealing furnace waste heat recovery system energy-saving technology
下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:3
3
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 gas engine heat pump coefficient of performance primary energy ratio heating mode heat recovery
下载PDF
Techno-economic feasibility assessment of a diesel exhaust heat recovery system to preheat mine intake air in remote cold climate regions 被引量:1
4
作者 Marco Antonio Rodrigues de Brito Durjoy Baidya Seyed Ali Ghoreishi-Madiseh 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期517-523,共7页
Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃... Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃.This extensive amount of heating is usually provided by employing large-size air heaters,fueled by diesel,propane,natural gas,or heavy oil,leading to high energy costs and large carbon footprints.At the same time,the thermal energy content of a diesel generator sets(gen-sets)exhaust is known to be one-third of the total heating value of its combusted fuel.Exhaust heat recovery from diesel gen-sets is a growing technology that seeks to mitigate the energy costs by capturing and redirecting this commonly rejected exhaust heat to other applications such as space heating or pre-heating of the mine intake air.The present study investigated the possibility of employing a simple system based on off-theshelf heat exchanger technology,which can recover the waste heat from the exhaust of the power generation units(diesel gen-sets)in an off-grid,cold,remote mine in Canada for heating of the mine intake air.Data from a real mine was used for the analysis along with environmental data of three different location-scenarios with distinct climates.After developing a thermodynamic model,the heat savings were calculated,and an economic feasibility evaluation was performed.The proposed system was found highly viable with annual savings of up to C$6.7 million and capable enough to provide an average of around 75%of the heating demand for mine intake air,leading to a payback period of about eleven months or less for all scenarios.Deployment of seasonal thermal energy storage has also been recommended to mitigate the mismatch between supply and demand,mainly in summertime,possibly allowing the system to eliminate fuel costs for intake air heating. 展开更多
关键词 Exhaust heat recovery Mine energy management Mine heating Alternative energy Intake air heating
下载PDF
Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
5
作者 Xueqing Lu Yuetao Shi Jinsong Li 《Energy Engineering》 EI 2023年第6期1325-1352,共28页
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun... In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system. 展开更多
关键词 Municipal solid waste liquefied natural gas energy recovery combined power heating and cooling determining power by heating load net electrical efficiency energy utilization efficiency
下载PDF
Technical and Economic Aspects and Experience from 6 Years of Operating the Technology Using the Waste Heat from the Exhaust Gases of Heat Sources and 3 Years of Operating a Heating Plant in an Autonomous, Island Regime 被引量:1
6
作者 Imrich Discantiny 《Journal of Geological Resource and Engineering》 2019年第2期39-44,共6页
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p... This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level. 展开更多
关键词 NATURAL GAS (NG) liquefied NATURAL GAS (LNG) liquefied propane GAS (LPG) combined heat & power (CHP) renewable energy sources (RES) waste heat recovery (WHR) international GAS union (IGU)
下载PDF
Simulation Research on Performance of a Novel Heating and Cooling System with Thermoelectric Module
7
作者 Mingxin Li Benzhi Hou Yihua Zheng 《Journal of Renewable Materials》 SCIE EI 2022年第11期3079-3091,共13页
This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achi... This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achieve controlled and adjustable heating of the circulating water.Simulations were conducted to study the thermal performance of the system while it simultaneously produces hot and cold water,with different working conditions for the hot-and cold-side water outlets.The results show that the water temperature at the hot side outlet increases from 32℃to 75℃when the power increases from 4.5 to 50 W.Additionally,the use of thermoelectric modules to heat water and recover waste heat is 22%more efficient than ordinary electric water heating systems. 展开更多
关键词 Thermoelectric module energy complementarity waste heat recovery Nomenclature
下载PDF
Case Analysis of a Pump-Driven Heat Pipe Heat Recovery Ventilator in an Existing Experiment Building
8
作者 Zhun Li Zhengrong Ouyang +3 位作者 Tianbao Sun Qiang Li Xiaobo Zhao Rong Yu 《Energy Engineering》 EI 2022年第4期1393-1402,共10页
The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning s... The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning system for fresh air handling can be saved effectively when the exhaust air energy could be recovered to preheat or precool the fresh air.Considering the install locations requirements on field,the pump-driven heat pipes(PHP)were developed as heat recovery ventilators(HRVs)and used in an existing experiment building in Beijing Urban.The thermal performance of the PHP HRVs was tested in real operation time periods under winter running mode.Both the power and heat consumption of the modular air handling units with and without HRVs were monitored and obtained,as well as the hourly power and heat consumption.The energy savings of HRVs were analyzed.The results indicate that the PHP HRVs can work steadily and meet the energy recovery need well.The temperature effectiveness of the HRVs can be kept from 60%to 70%.The test total energy saving rate was 24.48%,and the average hourly heat consumption reduced by 28.54%.The daily energy consumption can be saved by 118 kWh,and the energy savings can reach to 9440 kWh for a whole winter. 展开更多
关键词 Case analysis heat recovery ventilator pump-driven heat pipe temperature effectiveness energy saving
下载PDF
WASTE TO WORTH:EVALUATION OF POTENTIAL WASTE HEAT RECOVERY SYSTEM WITHIN COMMERCIAL KITCHENS IN NORTHERN IRELAND
9
作者 J.Onyango C.McGeough E.A.Obonyo 《Journal of Green Building》 2012年第4期62-69,共8页
This paper presents results from a study that evaluated the potential of waste heat recovery technology within the context of commercial kitchens in Northern Ireland.The study,which involved both numerical simulation ... This paper presents results from a study that evaluated the potential of waste heat recovery technology within the context of commercial kitchens in Northern Ireland.The study,which involved both numerical simulation and measured data from five restaurant kitchens in Belfast,revealed that heat recovery technology provided substantial economic and environmental savings.Compact devices such as the spiral tube heat exchanger can be utilized as a sustainable solution to retrofit existing hot water systems.We recommend,however,that subsequent research be conducted to broaden the scope of this study by using complementary technologies such as solar panels,wind turbines,or modified cookers that would provide a holistic and sustainable solution for the catering industry. 展开更多
关键词 CO_(2)emissions heat exchanger energy recovery sustainability UK
下载PDF
An approach for IC engine coolant energy recovery based on low-temperature organic Rankine cycle 被引量:1
10
作者 付建勤 刘敬平 +2 位作者 徐政欣 邓帮林 刘琦 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期727-734,共8页
To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as hea... To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine. 展开更多
关键词 IC engine waste heat recovery organic Rankine cycle cycle efficiency coolant energy
下载PDF
Feasibility Demonstrations of Liquid Turbine Power Generator Driven by Low Temperature Heats 被引量:2
11
作者 Seiichi Deguchi Norifumi Isu +1 位作者 Hidenori Kato Saeko Miwa 《Journal of Power and Energy Engineering》 2016年第8期59-67,共9页
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp... Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers. 展开更多
关键词 Liquid Turbine Power Generator Low Temperature heats recovery Phase Changes Biphasic Medium energy Harvesting Technology
下载PDF
Rational Distribution of Heat Loss in Well Bore
12
作者 Li Jingqin(Liaohe Petroleum Exploration Bureau)Chen Yanhua and Xiang Xinyao(Daqing Petroleum Institute) 《China Oil & Gas》 CAS 1996年第4期216-217,共2页
RationalDistributionofHeatLossinWellBoreLiJingqin(LiaohePetroleumExplorationBureau)ChenYanhuaandXiangXinyao(... RationalDistributionofHeatLossinWellBoreLiJingqin(LiaohePetroleumExplorationBureau)ChenYanhuaandXiangXinyao(DaqingPetroleumIn... 展开更多
关键词 heat TRANSFER energy SAVING Thermal recovery
下载PDF
溴化锂吸收式余热回收机组的设计 被引量:1
13
作者 钟国坚 谢庆亮 陈木凤 《贵州大学学报(自然科学版)》 2024年第1期78-82,88,共6页
针对核电站低温余热回收利用的问题,将海水淡化技术与基于吸收式热交换的热电联产集中供应技术相结合,设计了一个溴化锂吸收式余热回收机组。该机组主要由蒸发器、吸收器、发生器、冷凝器、溶液热交换器、节流装置、溶液泵、冷剂泵等组... 针对核电站低温余热回收利用的问题,将海水淡化技术与基于吸收式热交换的热电联产集中供应技术相结合,设计了一个溴化锂吸收式余热回收机组。该机组主要由蒸发器、吸收器、发生器、冷凝器、溶液热交换器、节流装置、溶液泵、冷剂泵等组成。验证分析表明:该机组可有效回收高温海水的余热,并用于淡化海水,在所需制热量为28784 kW的前提下,按年利用7200 h计算,全年海水的余热回收量约280000 GJ,全年淡水产量约2160000 t,减少了对生态环境的影响,大大提高了经济效益。因此该机组可为溴化锂吸收式热泵机组的优化设计提供良好参考。 展开更多
关键词 溴化锂吸收式 余热回收 海水淡化 节能环保
下载PDF
温差发电协同储能元件驱动LED车灯的响应特性
14
作者 王静 陈永强 +2 位作者 刘彦君 朱涛 李小华 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第4期404-410,共7页
为实现低品位能源的高效利用,构建了基于温差发电的余热回收系统将余热转化为电能,用以驱动发光二极管(light emitting diodes,LED)车灯点亮.利用恒温加热炉模拟热源,探究了余热回收系统在不同阶段能量转化和驱动LED车灯的响应特性.在... 为实现低品位能源的高效利用,构建了基于温差发电的余热回收系统将余热转化为电能,用以驱动发光二极管(light emitting diodes,LED)车灯点亮.利用恒温加热炉模拟热源,探究了余热回收系统在不同阶段能量转化和驱动LED车灯的响应特性.在实际应用中,研究了储能元件独立驱动LED车灯时光输出特性的变化规律.结果表明:储能元件可以存储回收余热所转化的电能,并独立驱动LED车灯工作,还能缓冲温度变化引起的电压波动;锂电池的能量密度高,可储存更多电能,独立驱动LED车灯时冷启动速度快,点亮时间更长,但充满电所需时间也较长;超级电容冷启动速度慢,但充放电速度较快,有助于余热回收系统短时间工作时缓解LED车灯的驱动电压波动. 展开更多
关键词 温差发电器 余热回收 LED 储能 升压变换
下载PDF
中深层水平连通地热井取热特性研究
15
作者 张杰 王贵洋 +1 位作者 王鹏涛 王姝媛 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期161-169,共9页
高效取热技术是实现地热效益化开发的关键,建立了水平连通地热井数值仿真模型,计算了连续开采和间歇开采工况下的出口流体温度和换热量,研究了注入温度、注入流量、水平段长度对系统换热性能和岩层温度恢复能力的影响。结果表明,随着注... 高效取热技术是实现地热效益化开发的关键,建立了水平连通地热井数值仿真模型,计算了连续开采和间歇开采工况下的出口流体温度和换热量,研究了注入温度、注入流量、水平段长度对系统换热性能和岩层温度恢复能力的影响。结果表明,随着注入流量增加,地热井出口水温下降,但整个系统换热量提高;当注入温度较高时,可有效提高出口水温,但系统换热量降低较大;随着水平段长度增加,出口水温和换热量逐渐上升,换热性能提高;岩层温度恢复能力随注入流量和注入温度的增加而提高。综合考虑钻井成本、水泵功耗等因素,适量增加注入流量、降低注入温度、增加水平段长度能有效提高水平连通换热井的换热性能;虽然高的注入温度可提升岩层温度恢复能力,但不利于提高系统换热性能。 展开更多
关键词 中深层地热 水平连通地热井 换热性能 取热量 地温恢复能力
下载PDF
基于清洁供热与IDC排热的能源综合利用系统应用探讨
16
作者 黄翔 田金星 +3 位作者 褚俊杰 李潼 薛直勤 郭林 《暖通空调》 2024年第11期140-145,93,共7页
统筹协调各种能源互补特性,通过“源-网-荷-储”等各环节灵活配置,实现能源就地消纳,提升系统综合利用能效,并结合西安市某工程案例对系统应用情况进行了节能及经济性分析。结果表明:与传统方案相比,系统每年可节约标准煤171.92万t,减... 统筹协调各种能源互补特性,通过“源-网-荷-储”等各环节灵活配置,实现能源就地消纳,提升系统综合利用能效,并结合西安市某工程案例对系统应用情况进行了节能及经济性分析。结果表明:与传统方案相比,系统每年可节约标准煤171.92万t,减排二氧化碳428.6万t、二氧化硫2.84万t、氮氧化物2.68万t、烟尘1.65万t,且数据中心电能利用效率(PUE)为1.248,实际案例财务净现值64397.47万元,静态投资回收期4.43 a,动态投资回收期6.25 a。具有显著的节能性和经济性,可为相关区域能源综合利用系统规划项目提供参考。 展开更多
关键词 数据中心 余热回收 能源供应 清洁供热 能源综合利用系统 节能减排 经济性分析
下载PDF
水冷冷水机组热回收的节能分析
17
作者 吴小卫 赵迅 +1 位作者 陈祖铭 唐磊 《节能技术》 CAS 2024年第3期208-212,共5页
本文首先介绍了夏热冬暖地区生活热水系统常用的三种热水供给方案,并对其所用的热源机组进行能效分析及能耗分析,把空调制冷与生活热水作为一个整体,具体计算了三种方案热源机组的单位制热量耗电指标,这一指标的计算结果表明了回收水冷... 本文首先介绍了夏热冬暖地区生活热水系统常用的三种热水供给方案,并对其所用的热源机组进行能效分析及能耗分析,把空调制冷与生活热水作为一个整体,具体计算了三种方案热源机组的单位制热量耗电指标,这一指标的计算结果表明了回收水冷冷水机组的冷凝余热用于生活热水系统节能效果明显,且在此基础上推导出不同环境温度下运行经济性最佳的水冷冷水机组热回收温度,进而通过工程实例广东佛山某酒店项目的生活热水系统热源机组年能耗计算佐证之。本文量化分析了水冷冷水机组热回收的节能效果以及热回收温度对节能效果的影响,以期为水冷冷水机组热回收的应用及运行提供有益的参考和指导。 展开更多
关键词 热回收 能效 能耗 单位制热量耗电指标 分界温度
下载PDF
EFFICIENT HEATING AND COOLING SYSTEMS FOR LOW-ENERGY HOUSES
18
作者 Vasile Minea 《Journal of Green Building》 2012年第4期16-35,共20页
Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential d... Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential dwellings), produce 38% of the total carbon dioxide emissions, and account for 12.2% of the total quantity of water consumed (2006). In this context, buildings with considerably reduced energy consumption are a key strategy to achieving energy savings and climate protection targets in both the residential and commercial/institutional sectors [1]. This article reviews a number of heating and cooling systems-existing and/or under development- available for residential buildings and briefly outlines some research projects and initiatives, as well as technical achievements in Canada and other developed countries over the last few years. 展开更多
关键词 low-energy house building integrated photovoltaic thermal system energy efficiency heat pump heat recovery
下载PDF
海上平台烟气余热利用分析与工艺优化
19
作者 张雨 贺相军 《化工机械》 CAS 2024年第3期470-476,共7页
依托南海某在建钻采平台,从工艺原理、工艺流程、有机工质的选择、安全性、能源节约及降低二氧化碳排放等方面进行分析,论证有机朗肯循环(Organic Rankine Cycle,ORC)技术在海上平台应用的可行性。根据能量梯级利用原则,设计一套优化的... 依托南海某在建钻采平台,从工艺原理、工艺流程、有机工质的选择、安全性、能源节约及降低二氧化碳排放等方面进行分析,论证有机朗肯循环(Organic Rankine Cycle,ORC)技术在海上平台应用的可行性。根据能量梯级利用原则,设计一套优化的烟气-导热油-热用户系统,利用透平废热实现ORC发电、生产系统加热及溴化锂制冷的热电冷联产系统。 展开更多
关键词 海洋平台 有机朗肯循环 余热回收 有机工质 能量梯级利用
下载PDF
一种智控型烟气余热深度回收装置的实践探索
20
作者 李军 耿景明 樊鹏 《石油石化节能与计量》 CAS 2024年第4期62-66,共5页
为了解决大庆油田加热炉排烟温度高、生产能耗大的问题,在加热炉排烟系统增设智控型烟气余热深度回收装置,以加热炉进液为冷源,将排烟温度冷却至50℃以下,综合回收烟气的显热和潜热,达到深度回收烟气余热的目的,并对烟气降温过程中产生... 为了解决大庆油田加热炉排烟温度高、生产能耗大的问题,在加热炉排烟系统增设智控型烟气余热深度回收装置,以加热炉进液为冷源,将排烟温度冷却至50℃以下,综合回收烟气的显热和潜热,达到深度回收烟气余热的目的,并对烟气降温过程中产生的冷凝水进行全部回收,从根本上解决了冷凝水排放问题。应用装置前后系统整体热效率分别为79.94%和87.47%,综合计算得到装置的节能率为8.35%,节能效果显著;此外,对于1.0 MW加热炉,年平均负荷率50%,年运行时间330 h,测算得到每年节约天然气4.58×10^(4) m^(3),折合7.4万元,具有良好的经济效益。 展开更多
关键词 油田加热炉 烟气余热 烟气冷凝水 冷凝水回收 节能降碳
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部