Abstract Forests have been expanding over typical savanna sites for the past 3000 years in the Neotropics. Such invasion can produce a series of environmental modifications on typical savanna; however, it remains uncl...Abstract Forests have been expanding over typical savanna sites for the past 3000 years in the Neotropics. Such invasion can produce a series of environmental modifications on typical savanna; however, it remains unclear how modifications in soil properties, caused by the encroachment of woody species, facilitate the expansion of forest ecosystems under dystrophic conditions. Here we examined chemical and microbiological changes associ- ated with tree encroachment in oxisols of a Neotropical Savanna at Assis Ecological Station, Southeastern Brazil. We predicted that tree encroachment caused by typical forest species would cause significant changes in the chemical and microbiological properties of savanna soils. Soils were sampled at Assis Ecological Station, from savanna sites differing in tree encroachment (typical, dense and forested savanna) caused by decades of fire exclusion. We analysed vegetation leaf area index and leaf litter volume deposited in the studied plots and chemical (pH,organic matter, P, K, Ca, Mg, A1, NO3-, NH4+) and microbiological (microbial C biomass and dehydrogenase activity) properties of soils under distinct encroachment conditions. Most soil chemical properties did not change along the tree encroachment gradient; however, total P, soil organic matter, soil microbial C and dehydrogenase activity increased from typical savanna to forested savanna. The changes in soil organic matter and dehydrogenase activity were correlated with the values of leaf area index and litter volume along the encroachment gradient. Our results demonstrate that forest species can increase carbon and phosphorus supplies in tropical savanna soils.展开更多
Whitebark pine (Pinus albicaulis) populations are in decline across the species' range due to historic wildfire exclusion, mountain pine beetle (Dendroctonus ponderosae, MPB) outbreaks, and an invasive fungal pat...Whitebark pine (Pinus albicaulis) populations are in decline across the species' range due to historic wildfire exclusion, mountain pine beetle (Dendroctonus ponderosae, MPB) outbreaks, and an invasive fungal pathogen causing the disease white pine blister rust (Cronartium ribicola, WPBR). Despite reliance on stand- replacing fires, information on whitebark pine regeneration occurrence is limited and the trajectory of future forests is largely unknown in some areas of the range. Regeneration densities were assessed in burned and adjacent non-burned areas at six high elevation locations in northwest Wyoming where stand-replacing fires occurred 8-32 years before thesurveys. In these locations at the eastern extent of the species range, we assessed what site factors were associ- ated with regeneration success. Whitebark pine regen- eration density was greater and seedlings were older in non-burned compared to burned areas. Within burns, north aspects had more regeneration than south aspects. Potential seed source densities and other species' regeneration were positively related to whitebark p^ne regeneration densities in burned areas. South facing slopes or grass covered areas may have either delayed or no regeneration of whitebark pine without the help of artificial planting.展开更多
文摘Abstract Forests have been expanding over typical savanna sites for the past 3000 years in the Neotropics. Such invasion can produce a series of environmental modifications on typical savanna; however, it remains unclear how modifications in soil properties, caused by the encroachment of woody species, facilitate the expansion of forest ecosystems under dystrophic conditions. Here we examined chemical and microbiological changes associ- ated with tree encroachment in oxisols of a Neotropical Savanna at Assis Ecological Station, Southeastern Brazil. We predicted that tree encroachment caused by typical forest species would cause significant changes in the chemical and microbiological properties of savanna soils. Soils were sampled at Assis Ecological Station, from savanna sites differing in tree encroachment (typical, dense and forested savanna) caused by decades of fire exclusion. We analysed vegetation leaf area index and leaf litter volume deposited in the studied plots and chemical (pH,organic matter, P, K, Ca, Mg, A1, NO3-, NH4+) and microbiological (microbial C biomass and dehydrogenase activity) properties of soils under distinct encroachment conditions. Most soil chemical properties did not change along the tree encroachment gradient; however, total P, soil organic matter, soil microbial C and dehydrogenase activity increased from typical savanna to forested savanna. The changes in soil organic matter and dehydrogenase activity were correlated with the values of leaf area index and litter volume along the encroachment gradient. Our results demonstrate that forest species can increase carbon and phosphorus supplies in tropical savanna soils.
基金supported by USDA Forest Service,Region 1 and 4,Whitebark Pine Restoration Fund,Agreement No.07-CA-11010000-009the Colorado State University,Agricultural Experiment Station
文摘Whitebark pine (Pinus albicaulis) populations are in decline across the species' range due to historic wildfire exclusion, mountain pine beetle (Dendroctonus ponderosae, MPB) outbreaks, and an invasive fungal pathogen causing the disease white pine blister rust (Cronartium ribicola, WPBR). Despite reliance on stand- replacing fires, information on whitebark pine regeneration occurrence is limited and the trajectory of future forests is largely unknown in some areas of the range. Regeneration densities were assessed in burned and adjacent non-burned areas at six high elevation locations in northwest Wyoming where stand-replacing fires occurred 8-32 years before thesurveys. In these locations at the eastern extent of the species range, we assessed what site factors were associ- ated with regeneration success. Whitebark pine regen- eration density was greater and seedlings were older in non-burned compared to burned areas. Within burns, north aspects had more regeneration than south aspects. Potential seed source densities and other species' regeneration were positively related to whitebark p^ne regeneration densities in burned areas. South facing slopes or grass covered areas may have either delayed or no regeneration of whitebark pine without the help of artificial planting.