The texture evolution and mechanical properties of Cu-Ag alloys subjected to severe plastic deformation at cryogenic temperature(CT) were investigated and the sequent annealing behaviors were also studied.Compared w...The texture evolution and mechanical properties of Cu-Ag alloys subjected to severe plastic deformation at cryogenic temperature(CT) were investigated and the sequent annealing behaviors were also studied.Compared with the sheets rolled at room temperature(RT) showing copper texture,the CT-rolled sheets exhibited brass texture which indicated that cross-slip was suppressed at CT,and both the ultimate tensile strength and yield strength of the sheets were increased.Due to the in-situ recrystallization mechanism,recrystallization textures in as-annealed CT-rolled sheets were randomly distributed,while the as-annealed RT-rolled sheets mainly contained cube texture.Microstructures of the rolled and annealed sheets were observed using optical microscopy and electronic back-scatter diffraction.The results show that the dynamic recovery was suppressed during CT-rolling and resulted in higher deformation energy storage.Therefore,the recrystallization of CT-rolled sheets could start at a lower temperature than that of RT-rolled sheet at the same reduction.展开更多
The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain ra...The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.展开更多
In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical...In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.展开更多
Increasing the recrystallization temperature to achieve better high-temperature performance is critical in the development of molybdenum alloys for ultrahightemperature applications,such as the newest generation of mu...Increasing the recrystallization temperature to achieve better high-temperature performance is critical in the development of molybdenum alloys for ultrahightemperature applications,such as the newest generation of multitype high-temperature nuclear reactors.In this study,an innovative strategy was proposed to improve the performance of molybdenum alloys at high temperature by using the two-dimensional MAX(where M is an early transition metal,A is an A-group element and X is C or N)ceramic material Ti_(3)AlC_(2).The relationships between flow stress,strain rate and temperature were studied.The microstructure,distribution of misorientation and evolution of dislocations in the Mo-Ti_(3)AlC_(2) alloy were analyzed.The microscopic mechanism of the Ti_(3)AlC_(2) phase in the molybdenum alloy at high temperatures was clarified.The experimental results showed that the peak flow stress of Mo-Ti_(3)AlC_(2) at 1600℃ reached 155 MPa,which was161.8% greater than that of pure Mo.The activation energy of thermal deformation of Mo-Ti_(3)AlC_(2) was as large as537 kJ·mol~(-1),which was 17.6% more than that of pure Mo.The recrystallization temperature reached 1600℃ or even higher.The topological reaction of the Ti_(3)AlC_(2) phase consumed a large amount of energy at high temperatures,resulting in increases in the deformation activation energy.Nanolayer structures of AlTi_3 and Ti-O Magneli-phase oxides(Ti_nO_(2n-1)) were formed in-situ,which relied on kink bands and interlayer slip,resulting in many dislocations during deformation.Therefore,the special two-dimensional of the structure Ti_(3)AlC_(2) ceramic inhibited the recrystallization behavior of the Mo alloy.The results of this study can provide theoretical guidance for the development of a new generation of molybdenum alloys for use in ultrahigh-temperature environments.展开更多
Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization pr...Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization process,which has not been fully understood in the typical Mg-RE based alloy.In this work,it is claimed for the first time that the minor Ce addition(∼0.3 wt%)into Mg matrix significantly pro-motes the pyramidal<c+a>and non-basal<a>dislocations at the early stage of extrusion,which con-sequently enhances the formation of sub-grain boundaries via the movement and recovery of pyramidal II-type<c+a>dislocations.At this stage,fine sub-grain lamellae are widely observed predominantly due to the low migration rate of sub-grain boundary caused by the limited mobility of<c+a>dislocations.At the later stage,the sub-grains continuously transform into dynamic recrystallized(DRXed)grains that have10¯10Taylor axis and also strong fiber texture,indicating substantial activation of pyramidal II-type<c+a>dislocation.The low mobility of<c+a>dislocations,accompanied with the solute drag from grain boundary(GB)segregation and pinning from nano-phases,cause a sluggish DRX process and thus a bimodal microstructure with ultra-fined DRXed grains,∼0.51μm.The resultant texture hardening and grain refinement hardening effects,originated from bimodal microstructure,result in a yield strength of∼352 MPa,which is exceptional in Mg-Ce dilute alloy.This work clarifies the critical role of Ce addition in tuning recrystallization behavior and mechanical property of magnesium,and can also shed light on designing the other high-performance Mg alloys.展开更多
The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation ...The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.展开更多
Four tools with different pin centerline deviations were fabricated to friction stir weld(FSW)thick plates of Al-Mg-Zn-Cu alloys.The results show that,compared with the pin without pin centerline deviation,the applyin...Four tools with different pin centerline deviations were fabricated to friction stir weld(FSW)thick plates of Al-Mg-Zn-Cu alloys.The results show that,compared with the pin without pin centerline deviation,the applying of pin centerline deviation is favorable to improve the flowability of plastic material,enlarging the size of nugget zone,refining the grains and reprecipitated phase particles,enhancing the degrees of dynamic recrystallization and quantity of high angle grain boundaries owing to higher temperature and bigger eccentric force,resulting in the increase of strain hardening.Especially for the used pin with a centerline deviation of 0.2 mm,the highest average hardness and best metallurgical properties of thick FSW joints are produced,and which are consistent with the microstructure evolution and recrystallization behavior.Moreover,the fracture mode of the joints produced by the pins with centerline deviation from 0 mm to 0.3 mm changes gradually from a brittle fracture in the nugget zone(NZ)to a ductile failure in the HAZ.展开更多
Oxide dispersion strengthened (ODS) steels can be used as the structural materials in the future fusion reactors and the fuel cladding materials in the advanced fission reactors. However, the weldability of ODS stee...Oxide dispersion strengthened (ODS) steels can be used as the structural materials in the future fusion reactors and the fuel cladding materials in the advanced fission reactors. However, the weldability of ODS steels is a severe problem. In the present study, defect-free joints of the 15Cr-ODS ferritic steel were achieved by friction stir welding at different rotation speeds. The recrystallization, hardness and tensile properties are highly related with the rotation speed of the stir tool. The higher rotation speed results in coarser grains in the top SZ, while the grain size exhibits more complicated relation with the rotation speed in the SZ center. The joint welded at 250 rpm exhibits a maximum tensile strength of 974 MPa that reaches about 84% of that of the base metal.展开更多
In order to optimize the deformation processing, the hot deformation behavior of Co-Cr-Mo-Cu (here- after named as Co-Cu) alloy was studied in this paper at a deformation temperature range of 950-1150 ℃ and a strai...In order to optimize the deformation processing, the hot deformation behavior of Co-Cr-Mo-Cu (here- after named as Co-Cu) alloy was studied in this paper at a deformation temperature range of 950-1150 ℃ and a strain rate range of 0.008-5 s^-1. Based on the true stress-true strain curves, a constitutive equation in hyperbolic sin function was established and a hot processing map was drawn. It was found that the flow stress of the Co-Cu alloy increased with the increase of the strain rate and decreased with the increase of the deforming temperature. The hot processing map indicated that there were two unstable regions and one well-processing region. The microstructure, the hardness distribution and the electro- chemical properties of the hot deformed sample were investigated in order to reveal the influence of the hot deformation. Microstructure observation indicated that the grain size increased with the increase of the deformation temperature but decreased with the increase of the strain rate. High temperature and low strain rate promoted the crystallization process but increased the grain size, which results in a reduction in the hardness. The hot deformation at high temperature (1100-1150 ℃) would reduce the corrosion resistance slightly. The final optimized deformation process was: a deformation temperature from 1050to 1100 ℃, and a strain rate from 0.008 to 0.2 s^-1, where a completely recrystallized and homogeneously distributed microstructure would be obtained.展开更多
基金Project(51271046)supported by the National Natural Science Foundation of China
文摘The texture evolution and mechanical properties of Cu-Ag alloys subjected to severe plastic deformation at cryogenic temperature(CT) were investigated and the sequent annealing behaviors were also studied.Compared with the sheets rolled at room temperature(RT) showing copper texture,the CT-rolled sheets exhibited brass texture which indicated that cross-slip was suppressed at CT,and both the ultimate tensile strength and yield strength of the sheets were increased.Due to the in-situ recrystallization mechanism,recrystallization textures in as-annealed CT-rolled sheets were randomly distributed,while the as-annealed RT-rolled sheets mainly contained cube texture.Microstructures of the rolled and annealed sheets were observed using optical microscopy and electronic back-scatter diffraction.The results show that the dynamic recovery was suppressed during CT-rolling and resulted in higher deformation energy storage.Therefore,the recrystallization of CT-rolled sheets could start at a lower temperature than that of RT-rolled sheet at the same reduction.
基金Project (51075098) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,China
文摘The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
基金the National Key Research and Development Program(2019YFB2006500)National Natural Science Foundation of China(51404082).
文摘In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.
基金sponsored by National Key R&D Program of China (No.2020YFB2008400)Key Technology and Development Program of Henan Province (No.232102231024)。
文摘Increasing the recrystallization temperature to achieve better high-temperature performance is critical in the development of molybdenum alloys for ultrahightemperature applications,such as the newest generation of multitype high-temperature nuclear reactors.In this study,an innovative strategy was proposed to improve the performance of molybdenum alloys at high temperature by using the two-dimensional MAX(where M is an early transition metal,A is an A-group element and X is C or N)ceramic material Ti_(3)AlC_(2).The relationships between flow stress,strain rate and temperature were studied.The microstructure,distribution of misorientation and evolution of dislocations in the Mo-Ti_(3)AlC_(2) alloy were analyzed.The microscopic mechanism of the Ti_(3)AlC_(2) phase in the molybdenum alloy at high temperatures was clarified.The experimental results showed that the peak flow stress of Mo-Ti_(3)AlC_(2) at 1600℃ reached 155 MPa,which was161.8% greater than that of pure Mo.The activation energy of thermal deformation of Mo-Ti_(3)AlC_(2) was as large as537 kJ·mol~(-1),which was 17.6% more than that of pure Mo.The recrystallization temperature reached 1600℃ or even higher.The topological reaction of the Ti_(3)AlC_(2) phase consumed a large amount of energy at high temperatures,resulting in increases in the deformation activation energy.Nanolayer structures of AlTi_3 and Ti-O Magneli-phase oxides(Ti_nO_(2n-1)) were formed in-situ,which relied on kink bands and interlayer slip,resulting in many dislocations during deformation.Therefore,the special two-dimensional of the structure Ti_(3)AlC_(2) ceramic inhibited the recrystallization behavior of the Mo alloy.The results of this study can provide theoretical guidance for the development of a new generation of molybdenum alloys for use in ultrahigh-temperature environments.
基金supported by National Key Research and De-velopment Program of China(No.2021YFB3701002)National Nat-ural Science Foundation of China(No.U2167213,51971053)+1 种基金and funded by the Project of Promoting Talents in Liaoning province(No.XLYC1808038).H.C.Pan acknowledges the financial assistance from Young Elite Scientists Sponsorship Program by CAST(2019-2021QNRC001,2019-2021QNRC002,2019-2021QNRC003)the fund from the Fundamental Research Funds for the Central Univer-sities(N2202020).
文摘Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization process,which has not been fully understood in the typical Mg-RE based alloy.In this work,it is claimed for the first time that the minor Ce addition(∼0.3 wt%)into Mg matrix significantly pro-motes the pyramidal<c+a>and non-basal<a>dislocations at the early stage of extrusion,which con-sequently enhances the formation of sub-grain boundaries via the movement and recovery of pyramidal II-type<c+a>dislocations.At this stage,fine sub-grain lamellae are widely observed predominantly due to the low migration rate of sub-grain boundary caused by the limited mobility of<c+a>dislocations.At the later stage,the sub-grains continuously transform into dynamic recrystallized(DRXed)grains that have10¯10Taylor axis and also strong fiber texture,indicating substantial activation of pyramidal II-type<c+a>dislocation.The low mobility of<c+a>dislocations,accompanied with the solute drag from grain boundary(GB)segregation and pinning from nano-phases,cause a sluggish DRX process and thus a bimodal microstructure with ultra-fined DRXed grains,∼0.51μm.The resultant texture hardening and grain refinement hardening effects,originated from bimodal microstructure,result in a yield strength of∼352 MPa,which is exceptional in Mg-Ce dilute alloy.This work clarifies the critical role of Ce addition in tuning recrystallization behavior and mechanical property of magnesium,and can also shed light on designing the other high-performance Mg alloys.
基金financially supported by the China Postdoctoral Science Foundation(No.2019M662276)the Chinese Academy of Science and Technology Service Network Planning(No.KFJ-STS-QYZD-145)。
文摘The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.52164045,52005240,51874179,51865035)the Natural Science Foundation Project of Jiangxi Province of China(No.20202BAB214019)the Key Laboratory Fund Project(No.EG202080409)。
文摘Four tools with different pin centerline deviations were fabricated to friction stir weld(FSW)thick plates of Al-Mg-Zn-Cu alloys.The results show that,compared with the pin without pin centerline deviation,the applying of pin centerline deviation is favorable to improve the flowability of plastic material,enlarging the size of nugget zone,refining the grains and reprecipitated phase particles,enhancing the degrees of dynamic recrystallization and quantity of high angle grain boundaries owing to higher temperature and bigger eccentric force,resulting in the increase of strain hardening.Especially for the used pin with a centerline deviation of 0.2 mm,the highest average hardness and best metallurgical properties of thick FSW joints are produced,and which are consistent with the microstructure evolution and recrystallization behavior.Moreover,the fracture mode of the joints produced by the pins with centerline deviation from 0 mm to 0.3 mm changes gradually from a brittle fracture in the nugget zone(NZ)to a ductile failure in the HAZ.
基金support of the National Magnet Confinement Fusion Energy Research Program(Grand No.2013GB108001)
文摘Oxide dispersion strengthened (ODS) steels can be used as the structural materials in the future fusion reactors and the fuel cladding materials in the advanced fission reactors. However, the weldability of ODS steels is a severe problem. In the present study, defect-free joints of the 15Cr-ODS ferritic steel were achieved by friction stir welding at different rotation speeds. The recrystallization, hardness and tensile properties are highly related with the rotation speed of the stir tool. The higher rotation speed results in coarser grains in the top SZ, while the grain size exhibits more complicated relation with the rotation speed in the SZ center. The joint welded at 250 rpm exhibits a maximum tensile strength of 974 MPa that reaches about 84% of that of the base metal.
基金financially supported by the National Natural Science Foundation of China (Nos. 81071262, 31271024 and 31470930)the Funding from Northeastern University ("985 program", Nos. N141008001 and LZ2014018), China
文摘In order to optimize the deformation processing, the hot deformation behavior of Co-Cr-Mo-Cu (here- after named as Co-Cu) alloy was studied in this paper at a deformation temperature range of 950-1150 ℃ and a strain rate range of 0.008-5 s^-1. Based on the true stress-true strain curves, a constitutive equation in hyperbolic sin function was established and a hot processing map was drawn. It was found that the flow stress of the Co-Cu alloy increased with the increase of the strain rate and decreased with the increase of the deforming temperature. The hot processing map indicated that there were two unstable regions and one well-processing region. The microstructure, the hardness distribution and the electro- chemical properties of the hot deformed sample were investigated in order to reveal the influence of the hot deformation. Microstructure observation indicated that the grain size increased with the increase of the deformation temperature but decreased with the increase of the strain rate. High temperature and low strain rate promoted the crystallization process but increased the grain size, which results in a reduction in the hardness. The hot deformation at high temperature (1100-1150 ℃) would reduce the corrosion resistance slightly. The final optimized deformation process was: a deformation temperature from 1050to 1100 ℃, and a strain rate from 0.008 to 0.2 s^-1, where a completely recrystallized and homogeneously distributed microstructure would be obtained.