Abstract:ools. The effective strain rate for for determining the total pressure developed during forging of a rectangular bar forging with bulging was expressed in terms of four-dimensional strain rate vector. The in...Abstract:ools. The effective strain rate for for determining the total pressure developed during forging of a rectangular bar forging with bulging was expressed in terms of four-dimensional strain rate vector. The inner-product of the vector was termwise integrated and summed. The integral mean value theorem was applied to determining the ratio of the strain rate components and the values of direction cosine of the vector and then an analytical solution of stress effective factor was obtained. The compression experiments of pure lead bar were performed to test the accuracy of the solution. The optimized results of total pressure by golden section search were compared with those of the indicator readings of the testing machine. It indicates that the optimized total pressures are 2.60%-10.14% higher than those measured. The solution is available and still an upper-bound solution.展开更多
The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finit...The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.展开更多
This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are ...This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint- Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.展开更多
A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,th...A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,the bites condition and contact status between rectangular groove and workpiece during rolling the first and second spring boards were analyzed.Then,a new oval-diamond groove combining oval groove and diamond groove was presented to eliminate these defects.By analyzing field variables under the same deformation degree,the larger friction can be obtained on the contact surface of workpiece and the oval-diamond groove.The physical experiment validates that the oval-diamond groove can eliminate these defects effectively,and the size of part is in good agreement with design requirement.展开更多
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspect...The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspects, the method proposed in thispaper is similar io Hutchinson's. However, the computation is simple since theintroduction is avoided of stretched coordinates. The method can be used to analyseinitial post-bifurcation of plates and shells in the plastic range.展开更多
The bent double-ridged rectangular tube(DRRT)with high forming quality is helpful to improve the microwave transmission accuracy.For reducing the cross-sectional deformation in the H-typed bending process,in addition ...The bent double-ridged rectangular tube(DRRT)with high forming quality is helpful to improve the microwave transmission accuracy.For reducing the cross-sectional deformation in the H-typed bending process,in addition to using rigid mandrel to support the inside of tube,ridge groove fillers are also added to restrict the deformation of ridge grooves.Because of the change of stress and strain state of bent tube in bending,rigid mandrel retracting and specially twicespringback stages,and the springback of fillers,the cross-sectional deformation of tube in each stage may be different.Therefore,based on the ABAQUS platform,the finite element models(FEM)for H-typed bending,mandrel retracting and twice-springback stages of H96 DRRT with fillers were established and validated.It is found that,for the height and width deformation of tube and spacing deformation of ridge grooves,retraction of mandrel can make the distribution of these deformations more uniform along the bending direction.The first springback can reduce these deformations significantly,which should be emphasized.But the second springback only increases them by less amount,which can be ignored.The smaller height deformation of ridge groove and filler can be neglected.展开更多
Different yield criterion has great difference in predicting the deformation of tube with different material.In order to improve the prediction accuracy of the cross-sectional deformation of the double-ridged rectangu...Different yield criterion has great difference in predicting the deformation of tube with different material.In order to improve the prediction accuracy of the cross-sectional deformation of the double-ridged rectangular tube(DRRT)during rotary draw bending(RDB)process,Mises isotropic yield criterion,Hill’48 and Barlat/Lian anisotropic yield criteria commonly used in practical engineering are introduced to simulate RDB of DRRT.The inverse method combining uniaxial tensile test of whole tube and response surface methodology was proposed to identify the parameters of Hill’48 and Barlat/Lian yield criteria of small-sized H96 brass extrusion DRRT as well.Then based on ABAQUS/Explicit platform,the FE models of RDB process of DRRT considering Mises,Hill’48 and Barlat/Lian yield criteria were built.The results show that:The variation trend of cross-sectional deformation ratio is same when using different yield criteria.The cross-sectional deformation ratio by using Mises yield criterion is close to that by using Hill’48 yield criterion.However,there is a quite difference between by using Barlat/Lian yield criterion and by using Mises or Hill’48 yield criteria.The prediction values of cross-sectional height deformation by using three yield criteria all underestimate the experiment ones,and the prediction values of cross-sectional width deformation overestimate the experiment ones.By comparing the simulation results of cross-sectional deformation of the DRRT with different yield criteria and experiment ones,Barlat/Lian yield criterion is found to be suitable for describing the RDB process of DRRT.展开更多
An exact analytical solution is obtained for convective heat transfer in straight ducts with rectangular cross-sections for the first time.This solution is valid for both H1 and H2 boundary conditions,which are relate...An exact analytical solution is obtained for convective heat transfer in straight ducts with rectangular cross-sections for the first time.This solution is valid for both H1 and H2 boundary conditions,which are related to fully developed convective heat transfer under constant heat flux at the duct walls.The separation of variables method and various other mathematical techniques are used to find the closed form of the temperature distribution.The local and mean Nusselt numbers are also obtained as functions of the aspect ratio.A new physical constraint is presented to solve the Neumann problem in non-dimensional analysis for the H2 boundary conditions.This is one of the major innovations of the current study.The analytical results indicate a singularity occurs at a critical aspect ratio of 2.4912 when calculating the local and mean Nusselt numbers.展开更多
基金Project(51074052)supported by the National Natural Science Foundation of ChinaProject(20100470676)supported by the China Postdoctoral Science Foundation
文摘Abstract:ools. The effective strain rate for for determining the total pressure developed during forging of a rectangular bar forging with bulging was expressed in terms of four-dimensional strain rate vector. The inner-product of the vector was termwise integrated and summed. The integral mean value theorem was applied to determining the ratio of the strain rate components and the values of direction cosine of the vector and then an analytical solution of stress effective factor was obtained. The compression experiments of pure lead bar were performed to test the accuracy of the solution. The optimized results of total pressure by golden section search were compared with those of the indicator readings of the testing machine. It indicates that the optimized total pressures are 2.60%-10.14% higher than those measured. The solution is available and still an upper-bound solution.
基金Projects(50575184,50975235) supported by the National Natural Science Foundation of ChinaProject(YF07057) supported by Science and Technology Development Program of Xi'an City,Shaanxi Province,China+1 种基金Project(NPU-FFR-200809) supported by Foundation for Fundamental Research of Northwestern Polytechnical University,ChinaProject(08-3) supported by State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,China
文摘The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.
文摘This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint- Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.
基金Project(51275543)supported by the National Natural Science Foundation of ChinaProject(cstc2009aa3012-1)supported by the Key Program of Chongqing Science and Technology Foundation,China
文摘A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,the bites condition and contact status between rectangular groove and workpiece during rolling the first and second spring boards were analyzed.Then,a new oval-diamond groove combining oval groove and diamond groove was presented to eliminate these defects.By analyzing field variables under the same deformation degree,the larger friction can be obtained on the contact surface of workpiece and the oval-diamond groove.The physical experiment validates that the oval-diamond groove can eliminate these defects effectively,and the size of part is in good agreement with design requirement.
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
文摘The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspects, the method proposed in thispaper is similar io Hutchinson's. However, the computation is simple since theintroduction is avoided of stretched coordinates. The method can be used to analyseinitial post-bifurcation of plates and shells in the plastic range.
基金the Science,Technology and Innovation Commission of Shenzhen Municipality of China(Nos.JCYJ20170306160003433 and JCYJ20180306171058717)111 Project of China(No.B08040)for the support given to this research。
文摘The bent double-ridged rectangular tube(DRRT)with high forming quality is helpful to improve the microwave transmission accuracy.For reducing the cross-sectional deformation in the H-typed bending process,in addition to using rigid mandrel to support the inside of tube,ridge groove fillers are also added to restrict the deformation of ridge grooves.Because of the change of stress and strain state of bent tube in bending,rigid mandrel retracting and specially twicespringback stages,and the springback of fillers,the cross-sectional deformation of tube in each stage may be different.Therefore,based on the ABAQUS platform,the finite element models(FEM)for H-typed bending,mandrel retracting and twice-springback stages of H96 DRRT with fillers were established and validated.It is found that,for the height and width deformation of tube and spacing deformation of ridge grooves,retraction of mandrel can make the distribution of these deformations more uniform along the bending direction.The first springback can reduce these deformations significantly,which should be emphasized.But the second springback only increases them by less amount,which can be ignored.The smaller height deformation of ridge groove and filler can be neglected.
基金supporting by the Science and Technology Project of Shenzhen of China(Nos.JCYJ20170306160003433 and JCYJ20180306171058717)the National Natural Science Foundation of China(No.51375392)。
文摘Different yield criterion has great difference in predicting the deformation of tube with different material.In order to improve the prediction accuracy of the cross-sectional deformation of the double-ridged rectangular tube(DRRT)during rotary draw bending(RDB)process,Mises isotropic yield criterion,Hill’48 and Barlat/Lian anisotropic yield criteria commonly used in practical engineering are introduced to simulate RDB of DRRT.The inverse method combining uniaxial tensile test of whole tube and response surface methodology was proposed to identify the parameters of Hill’48 and Barlat/Lian yield criteria of small-sized H96 brass extrusion DRRT as well.Then based on ABAQUS/Explicit platform,the FE models of RDB process of DRRT considering Mises,Hill’48 and Barlat/Lian yield criteria were built.The results show that:The variation trend of cross-sectional deformation ratio is same when using different yield criteria.The cross-sectional deformation ratio by using Mises yield criterion is close to that by using Hill’48 yield criterion.However,there is a quite difference between by using Barlat/Lian yield criterion and by using Mises or Hill’48 yield criteria.The prediction values of cross-sectional height deformation by using three yield criteria all underestimate the experiment ones,and the prediction values of cross-sectional width deformation overestimate the experiment ones.By comparing the simulation results of cross-sectional deformation of the DRRT with different yield criteria and experiment ones,Barlat/Lian yield criterion is found to be suitable for describing the RDB process of DRRT.
基金Project supported by the Shahrood University of Technology (No. 17024),Iran
文摘An exact analytical solution is obtained for convective heat transfer in straight ducts with rectangular cross-sections for the first time.This solution is valid for both H1 and H2 boundary conditions,which are related to fully developed convective heat transfer under constant heat flux at the duct walls.The separation of variables method and various other mathematical techniques are used to find the closed form of the temperature distribution.The local and mean Nusselt numbers are also obtained as functions of the aspect ratio.A new physical constraint is presented to solve the Neumann problem in non-dimensional analysis for the H2 boundary conditions.This is one of the major innovations of the current study.The analytical results indicate a singularity occurs at a critical aspect ratio of 2.4912 when calculating the local and mean Nusselt numbers.