We study the spontaneous emission(SE) of an excited nonrelativistic two-level system(TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLS’s transitions and the center-of-mass motion o...We study the spontaneous emission(SE) of an excited nonrelativistic two-level system(TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLS’s transitions and the center-of-mass motion of the TLS are taken into account. The SE rate and the carried frequency of the emitted photon for the TLS initially being at rest are obtained, it is found that in the first order of the mass M, the frequency of the emitted photon is smaller than the transition frequency of the TLS and the SE rate is smaller than the SE rate Γfof the TLS fixed in the same waveguide. The SE rate for the TLS initially being moving is obtained in the second order of the mass M. The SE rate is smaller than Γfbut it is dependent not only on the atomic mass but also on the initial momentum. The carried frequency of the emitted photon is decreased when it travels along the direction of the initial momentum, whereas it is increased when it travels in the opposite direction of the initial momentum.展开更多
In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth...In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.展开更多
The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this ...The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this paper.Two unknown stiffness components are considered:the TOBs connection and the enclosed RHS face.First,the trapezoidal thread of TOB,as an equivalent cantilevered beam subjected to uniformly distributed loads,is analyzed to determine the associated deformations.Based on the findings,the thread-shank serial-parallel stiffness model of TOB connection is proposed.For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces,the four sidewalls are treated as rotation constraints,thus reducing the problem to a two-dimensional plate analysis.According to the load superposition method,the deflection of the face plate is resolved into three components under various boundary and load conditions.Referring to the plate deflection theory of Timoshenko,the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing,RHS thickness,height to width ratio,etc.Finally,the validity of the above stiffness equations is verified by a series of finite element(FE)models of T-stub substructures.The proposed component stiffness equations are an effective supplement to the component-based method.展开更多
To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametri...To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns.展开更多
The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distri...The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.展开更多
The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim...The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.展开更多
Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting...Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting in the faceplate and shear stress acting in the honeycomb-core and warping displacement were deduced. Numerical analysis shows the normal stress attenuates quickly along x-axis. Normal stress acting on the cross section at a distance of 20 h from the fixed end is only one per cent of that acting on the fixed end.展开更多
The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the ...The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the bundles to heat transfer. The knowledge about the values of the kef coefficient of the section bundles is essential to correctly identify the parameters of their heat treatment process. The quality of the Calculation results were verified by the experimental measurement data. These measurements were performed in the guarded hot plate apparatus. It should be noted, that none of the eleven analyzed models of effective thermal conductivity is suitable for evaluation of thermal properties of the section bundles.展开更多
Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each spec...Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...展开更多
In this paper an analysis of the physical principles of two-criterion optimization Pareto static mode of operation of power sensors cantilever type of rectangular type with a stable cross-section.The proposed criterio...In this paper an analysis of the physical principles of two-criterion optimization Pareto static mode of operation of power sensors cantilever type of rectangular type with a stable cross-section.The proposed criterion based on the Cauchy number is one of the characteristic numbers of the proportional miniaturization of microsystem technology.It is established that,for a rectangular cantilever with a stable cross-section,the value of the Cauchy does not depend on the width of the microconsole and the material from which it is made.展开更多
The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspect...The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspects, the method proposed in thispaper is similar io Hutchinson's. However, the computation is simple since theintroduction is avoided of stretched coordinates. The method can be used to analyseinitial post-bifurcation of plates and shells in the plastic range.展开更多
This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are ...This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint- Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.展开更多
The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured r...The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured results, it shows that there exist big errors when applying this model to the numerical simulation of small-section rectangular tube' s welding temperature field and deformation. Based on a simple analysis of the errors, a contact model is presented. The heat transfer and stress analysis between small-section rectangular tubes and clamping fixture are simulated by using direct constraints method, and then the laws of the temperature distribution, which coincide with experiment, are obtained. A further numerical analysis of the stress and deformation are made, it shows that a "T" shaped stress-field is formed in the vicinity of the weld. As the stress-field departs from the centroid of tubes', this leads to the small rectangular tubes not only have a longitudinal deflection, but also have a transverse bending and deformation.展开更多
基金supported by the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China (Grant No. 2020RC4047)the National Natural Science Foundation of China (Grant Nos. 11975095, 12075082, and 11935006)。
文摘We study the spontaneous emission(SE) of an excited nonrelativistic two-level system(TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLS’s transitions and the center-of-mass motion of the TLS are taken into account. The SE rate and the carried frequency of the emitted photon for the TLS initially being at rest are obtained, it is found that in the first order of the mass M, the frequency of the emitted photon is smaller than the transition frequency of the TLS and the SE rate is smaller than the SE rate Γfof the TLS fixed in the same waveguide. The SE rate for the TLS initially being moving is obtained in the second order of the mass M. The SE rate is smaller than Γfbut it is dependent not only on the atomic mass but also on the initial momentum. The carried frequency of the emitted photon is decreased when it travels along the direction of the initial momentum, whereas it is increased when it travels in the opposite direction of the initial momentum.
基金Project (50975235) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by the 111 Project
文摘In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51978500 and 51538002).
文摘The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this paper.Two unknown stiffness components are considered:the TOBs connection and the enclosed RHS face.First,the trapezoidal thread of TOB,as an equivalent cantilevered beam subjected to uniformly distributed loads,is analyzed to determine the associated deformations.Based on the findings,the thread-shank serial-parallel stiffness model of TOB connection is proposed.For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces,the four sidewalls are treated as rotation constraints,thus reducing the problem to a two-dimensional plate analysis.According to the load superposition method,the deflection of the face plate is resolved into three components under various boundary and load conditions.Referring to the plate deflection theory of Timoshenko,the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing,RHS thickness,height to width ratio,etc.Finally,the validity of the above stiffness equations is verified by a series of finite element(FE)models of T-stub substructures.The proposed component stiffness equations are an effective supplement to the component-based method.
基金National Natural Science Foundation of China under Grant No.51178008,No.50908005National Basic Research Program of China under Grant No.2011CB013600+1 种基金the International Cooperative Project of NSFC-JST under Grant No.51021140003a Joint Research Project between the Beijing University of Technology and the University at Buffalo with Partial Support from the U.S.Federal Highway Administration under Contract No.DTFH61-07-C-00020
文摘To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns.
基金Funded by the National Natural Science Foundation of China(50525516)
文摘The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.
基金Projects(51278209 and 51478047) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY110) supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(2014FJ-NCET-ZR03) supported by Program for New Century Excellent Talents in Fujian Province University,ChinaProject(JA13005) supported by Incubation Programme for Excellent Young Science and Technology Talents in Fujian Province Universities,China
文摘The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.
文摘Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting in the faceplate and shear stress acting in the honeycomb-core and warping displacement were deduced. Numerical analysis shows the normal stress attenuates quickly along x-axis. Normal stress acting on the cross section at a distance of 20 h from the fixed end is only one per cent of that acting on the fixed end.
文摘The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the bundles to heat transfer. The knowledge about the values of the kef coefficient of the section bundles is essential to correctly identify the parameters of their heat treatment process. The quality of the Calculation results were verified by the experimental measurement data. These measurements were performed in the guarded hot plate apparatus. It should be noted, that none of the eleven analyzed models of effective thermal conductivity is suitable for evaluation of thermal properties of the section bundles.
基金Supported by National Natural Science Foundation of China (No.50608054)
文摘Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...
文摘In this paper an analysis of the physical principles of two-criterion optimization Pareto static mode of operation of power sensors cantilever type of rectangular type with a stable cross-section.The proposed criterion based on the Cauchy number is one of the characteristic numbers of the proportional miniaturization of microsystem technology.It is established that,for a rectangular cantilever with a stable cross-section,the value of the Cauchy does not depend on the width of the microconsole and the material from which it is made.
文摘The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspects, the method proposed in thispaper is similar io Hutchinson's. However, the computation is simple since theintroduction is avoided of stretched coordinates. The method can be used to analyseinitial post-bifurcation of plates and shells in the plastic range.
文摘This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint- Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.
文摘The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured results, it shows that there exist big errors when applying this model to the numerical simulation of small-section rectangular tube' s welding temperature field and deformation. Based on a simple analysis of the errors, a contact model is presented. The heat transfer and stress analysis between small-section rectangular tubes and clamping fixture are simulated by using direct constraints method, and then the laws of the temperature distribution, which coincide with experiment, are obtained. A further numerical analysis of the stress and deformation are made, it shows that a "T" shaped stress-field is formed in the vicinity of the weld. As the stress-field departs from the centroid of tubes', this leads to the small rectangular tubes not only have a longitudinal deflection, but also have a transverse bending and deformation.