Based on the von Karman-type theory of plates, nonlinear bending problems of simply supported symmetric laminated cross-ply rectangular plates under the combined action of pressure and inplane load are investigated in...Based on the von Karman-type theory of plates, nonlinear bending problems of simply supported symmetric laminated cross-ply rectangular plates under the combined action of pressure and inplane load are investigated in this paper. The solution which satisfies the governing equations and boundary conditions is obtained by using the double Fourier series method.展开更多
The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed...The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.展开更多
文摘Based on the von Karman-type theory of plates, nonlinear bending problems of simply supported symmetric laminated cross-ply rectangular plates under the combined action of pressure and inplane load are investigated in this paper. The solution which satisfies the governing equations and boundary conditions is obtained by using the double Fourier series method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872010, 10732020 and 11072008)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425209)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalitythe Ph.D. Programs Foundation of Beijing University of Technology (Grant No. 52001015200701)
文摘The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.