This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firs...The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.展开更多
Exact simulation of the acoustic performance is essential to the engineering application for a vehicle intake system. The rectangular-pulse method based on the computational fluid dynamics approach was employed for ca...Exact simulation of the acoustic performance is essential to the engineering application for a vehicle intake system. The rectangular-pulse method based on the computational fluid dynamics approach was employed for calculating the transmission loss. Firstly, the transmission loss of the single-cavity element was simulated without any airflow, and the effects of different structural parameters on the acoustic performance were investigated comprehensively. Secondly, the static transmission loss of the perforated intake pipe was obtained by the rectangular-pulse method, which is proved to be accurate enough compared with the result by finite element method. Thirdly, under the different conditions of the mean airflow and the operating temperature, the specific transmission loss was acquired respectively. In general, the peaks of the transmission loss are shifted to the lower frequency range because of the reverse airflow, but the amplitudes are irregularly changed. Besides, when the operating temperature increases, the peaks are shifted to the higher frequencies. Finally, with the designed perforated pipe installed to the intake system, the road tests were proceeded to evaluate the actual acoustic performance, and the result indicates that the intake sound pressure level is greatly attenuated. Typically in the range of 600–1500 Hz, the insertion loss of the intake noise at the decelerating moment is almost 20 d B(A), and the overall noise is reduced more than 14.2 d B(A). In conclusion, the perforated intake pipe has been proved excellent in improving the acoustic performance of intake system and could provide the guidance for the automotive engineering application.展开更多
The equivalent filter modeling of a rectangular dielectric post in a rectangular waveguide is obtained through the variational expression of input impedance. The reflection coefficient expressed in components of netwo...The equivalent filter modeling of a rectangular dielectric post in a rectangular waveguide is obtained through the variational expression of input impedance. The reflection coefficient expressed in components of network is in good agreement with the results given by K. Siakavara, et al. (1991), The method can be applied to design filter.展开更多
Direct numerical simulation of a jet issuing from a nozzle having a rectangular cross-section is conducted. The vortex in cell (VIC) method, of which computational accuracy was heightened by the authors in a prior stu...Direct numerical simulation of a jet issuing from a nozzle having a rectangular cross-section is conducted. The vortex in cell (VIC) method, of which computational accuracy was heightened by the authors in a prior study, is used for the DNS. The aspect ratio of the nozzle cross-section is 15, and the Reynolds number based on the shorter side length of the nozzle exit is 6700. The turbulence statics, such as the mean velocity and the turbulence intensity, are favorably compared with the experimentally measured results. The behavior of the large-scale eddies as well as the development of the turbulent flow is also confirmed to agree with the measurement. These indicate that the authors’ VIC method is successfully employed for the DNS of rectangular jet.展开更多
In this paper, the hydrodynamic characteristics and flow field around rectangular and delta hydrofoils, moving with a constant speed beneath the free surface are numerically studied by means of isoparametric boundary ...In this paper, the hydrodynamic characteristics and flow field around rectangular and delta hydrofoils, moving with a constant speed beneath the free surface are numerically studied by means of isoparametric boundary element method (IBEM). The quantities (source and dipole strengths) and the geometry of the dements are represented by a linear distribution. Two types of three-dimensional hydrofoils (rectangular and delta) are selected with NACA4412 and symmetric Joukowski sections. Some numerical results of pressure distribution, lift, wave-making drag coefficients and velocity field around the hydrofoils are presented. Also, the wave pattern due to moving hydrofoil is predicted at different operational conditions. Comparisons are made between computational results obtained through this method and those from the experimental measurements and other numerical results which reveal good agreement.展开更多
In this paper, reciprocal theorem method (RTM) is generalized to solve the problems for the forced vibration of thick rectangular plates based on the Reissner's theory. The paper derives the dynamic basic solution...In this paper, reciprocal theorem method (RTM) is generalized to solve the problems for the forced vibration of thick rectangular plates based on the Reissner's theory. The paper derives the dynamic basic solution of thick rectangular; and the exact analytical solution of the steady-state responses of thick rectangular plates with three clamped edges and one free edge under harmonic uniformly distributed disturbing forces is found by RTM. It is regarded as a simple, convenient and general method for calculating the steady-stare responses of forced vibration of thick rectangular plates.展开更多
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
文摘The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.
基金Project(51705454)supported by the National Natural Science Foundation of China
文摘Exact simulation of the acoustic performance is essential to the engineering application for a vehicle intake system. The rectangular-pulse method based on the computational fluid dynamics approach was employed for calculating the transmission loss. Firstly, the transmission loss of the single-cavity element was simulated without any airflow, and the effects of different structural parameters on the acoustic performance were investigated comprehensively. Secondly, the static transmission loss of the perforated intake pipe was obtained by the rectangular-pulse method, which is proved to be accurate enough compared with the result by finite element method. Thirdly, under the different conditions of the mean airflow and the operating temperature, the specific transmission loss was acquired respectively. In general, the peaks of the transmission loss are shifted to the lower frequency range because of the reverse airflow, but the amplitudes are irregularly changed. Besides, when the operating temperature increases, the peaks are shifted to the higher frequencies. Finally, with the designed perforated pipe installed to the intake system, the road tests were proceeded to evaluate the actual acoustic performance, and the result indicates that the intake sound pressure level is greatly attenuated. Typically in the range of 600–1500 Hz, the insertion loss of the intake noise at the decelerating moment is almost 20 d B(A), and the overall noise is reduced more than 14.2 d B(A). In conclusion, the perforated intake pipe has been proved excellent in improving the acoustic performance of intake system and could provide the guidance for the automotive engineering application.
文摘The equivalent filter modeling of a rectangular dielectric post in a rectangular waveguide is obtained through the variational expression of input impedance. The reflection coefficient expressed in components of network is in good agreement with the results given by K. Siakavara, et al. (1991), The method can be applied to design filter.
文摘Direct numerical simulation of a jet issuing from a nozzle having a rectangular cross-section is conducted. The vortex in cell (VIC) method, of which computational accuracy was heightened by the authors in a prior study, is used for the DNS. The aspect ratio of the nozzle cross-section is 15, and the Reynolds number based on the shorter side length of the nozzle exit is 6700. The turbulence statics, such as the mean velocity and the turbulence intensity, are favorably compared with the experimentally measured results. The behavior of the large-scale eddies as well as the development of the turbulent flow is also confirmed to agree with the measurement. These indicate that the authors’ VIC method is successfully employed for the DNS of rectangular jet.
文摘In this paper, the hydrodynamic characteristics and flow field around rectangular and delta hydrofoils, moving with a constant speed beneath the free surface are numerically studied by means of isoparametric boundary element method (IBEM). The quantities (source and dipole strengths) and the geometry of the dements are represented by a linear distribution. Two types of three-dimensional hydrofoils (rectangular and delta) are selected with NACA4412 and symmetric Joukowski sections. Some numerical results of pressure distribution, lift, wave-making drag coefficients and velocity field around the hydrofoils are presented. Also, the wave pattern due to moving hydrofoil is predicted at different operational conditions. Comparisons are made between computational results obtained through this method and those from the experimental measurements and other numerical results which reveal good agreement.
文摘In this paper, reciprocal theorem method (RTM) is generalized to solve the problems for the forced vibration of thick rectangular plates based on the Reissner's theory. The paper derives the dynamic basic solution of thick rectangular; and the exact analytical solution of the steady-state responses of thick rectangular plates with three clamped edges and one free edge under harmonic uniformly distributed disturbing forces is found by RTM. It is regarded as a simple, convenient and general method for calculating the steady-stare responses of forced vibration of thick rectangular plates.