针对现有文本检测与定位方法只能处理单一方向文本行的缺点,提出了一种基于语义分割方法的用于自然图像中文本检测的新方法。首先通过对现有检测方法以及目前语义分割方法在文本行检测中的局限性分析。然后对加入矩形卷积核的全卷积网...针对现有文本检测与定位方法只能处理单一方向文本行的缺点,提出了一种基于语义分割方法的用于自然图像中文本检测的新方法。首先通过对现有检测方法以及目前语义分割方法在文本行检测中的局限性分析。然后对加入矩形卷积核的全卷积网络模型进行训练,获得文本行区域的分类图。最后,通过全连接条件随机场(conditional random field,CRF)的高精度分割能力将网络前端输出的文本行区域中的文字给区分出来。该框架用于处理任意方向、语言和字体中的文本。所提出的方法在MSRA-TD500和ICDAR2015两个文本检测数据集上获得良好的分割结果且性能优越。展开更多
文摘针对现有文本检测与定位方法只能处理单一方向文本行的缺点,提出了一种基于语义分割方法的用于自然图像中文本检测的新方法。首先通过对现有检测方法以及目前语义分割方法在文本行检测中的局限性分析。然后对加入矩形卷积核的全卷积网络模型进行训练,获得文本行区域的分类图。最后,通过全连接条件随机场(conditional random field,CRF)的高精度分割能力将网络前端输出的文本行区域中的文字给区分出来。该框架用于处理任意方向、语言和字体中的文本。所提出的方法在MSRA-TD500和ICDAR2015两个文本检测数据集上获得良好的分割结果且性能优越。