A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity...A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints.展开更多
The location and geometry of large-scale asperity present at the foundation of concrete gravity dams and buttress dams affect the shear resistance of the concrete-rock interface.However,the parameters describing the f...The location and geometry of large-scale asperity present at the foundation of concrete gravity dams and buttress dams affect the shear resistance of the concrete-rock interface.However,the parameters describing the frictional resistance of the interface usually do not account for these asperities.This could result in an underestimate of the peak shear stre ngth,which leads to significantly conservative design for new dams or unnecessary stability enhancing measures for existing ones.The aim of this work was to investigate the effect of the location of first-order asperity on the peak shear strength of a concrete-rock interface under eccentric load and the model discrepancy associated with the commonly used rigid body methods for calculating the factor of safety(FS)against sliding.For this,a series of direct and eccentric shear tests under constant normal load(CNL)was carried out on concrete-rock samples.The peak shear strengths measured in the tests were compared in terms of asperity location and with the predicted values from analytical rigid body methods.The results showed that the large-scale asperity under eccentric load significantly affected the peak shear strength.Furthermore,unlike the conventional assumption of sliding or shear failure of an asperity in direct shear,under the effect of eccentric shear load,a tensile failure in the rock or in the concrete could occur,resulting in a lower shear strength compared with that of direct shear tests.These results could have important implications for assessment of the FS against sliding failure in the concrete-rock interface.展开更多
As an important model for explaining the seismic rupture mode,the asperity model plays an important role in studying the stress accumulation of faults and the location of earthquake initiation.Taking Qilian-Haiyuan fa...As an important model for explaining the seismic rupture mode,the asperity model plays an important role in studying the stress accumulation of faults and the location of earthquake initiation.Taking Qilian-Haiyuan fault as an example,this paper combines geodetic method and b-value method to propose a multi-source observation data fusion detection method that accurately determines the asperity boundary named dual threshold search method.The method is based on the criterion that the b-value asperity boundary should be most consistent with the slip deficit rate asperity boundary.Then the optimal threshold combination of slip deficit rate and b-value is obtained through threshold search,which can be used to determine the boundary of the asperity.Based on this method,the study finds that there are four potential asperities on the Qilian-Haiyuan fault:two asperities(A1 and A2)are on the Tuolaishan segment and the other two asperities(B and C)are on Lenglongling segment and Jinqianghe segment,respectively.Among them,the lengths of asperities A1 and A2 on Tuolaishan segment are 17.0 km and 64.8 km,respectively.And the lower boundaries are 5.5 km and 15.5 km,respectively;The length of asperity B on Lenglongling segment is 70.7 km,and the lower boundary is 10.2 km.The length of asperity C on Jinqianghe segment is 42.3 km,and the lower boundary is 8.3 km.展开更多
Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts betw...Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.展开更多
The peak identification scheme based method(three-point definition)and the spectral moments based method(spectral moment approach)are both widely used for asperity peak modeling in tribology.To discover the difference...The peak identification scheme based method(three-point definition)and the spectral moments based method(spectral moment approach)are both widely used for asperity peak modeling in tribology.To discover the differences between the two methods,a great number of rough surface profile samples with various statistical distributions are first randomly generated using FFT.Then the distribution parameters of asperity peaks are calculated for the generated samples with both methods.The obtained results are compared and verified by experiment.The variation rules of the differences between the two methods with statistical characteristics of rough surfaces are investigated.To explain for the discovered differences,the assumptions by spectral moment approach that the joint distribution of surface height,slope and curvature is normal and that the height distribution of asperities is Gaussian,are examined.The results show that it is unreasonable to assume a joint normal distribution without inspecting the correlation pattern of[z],[z′]and[z′′],and that the height distribution of asperities is not exactly Gaussian before correlation length of rough surface increases to a certain extent,20 for instance.展开更多
A new hybrid numerical method that couples the dynamic slider-crank mechanism(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effect of micro asperity contact on the tribological properties o...A new hybrid numerical method that couples the dynamic slider-crank mechanism(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effect of micro asperity contact on the tribological properties of a CB.In the hybrid model,the dynamic equations of the SCM are established based on the Newton method,while the lubrication equations of the CB are established on the basis of the Reynolds equation.Experimental data of the engine are also used in simulation analyses to enhance the reliability of the results.The load-bearing capacity(LBC)and friction force of the CB are selected as objective functions.Results show that the LBC has a negligible effect on the tribological properties of the CB,but the friction force greatly affects the resistance of the bearing under different radial clearances and surface roughness values.In particular,the maximum friction force in the asperity contact region accounts for 40.5%of the maximum total friction force at a radial clearance of 5μm and 77.7%of the maximum total friction of the CB with a surface roughness of 10μm.展开更多
An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the ~esnel field integral for rectangular symmetric sources. From a known result that the circle or rectangl...An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the ~esnel field integral for rectangular symmetric sources. From a known result that the circle or rectangle function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel Fourier transform. Two expansions are together inserted in this field integral, it is then expressible in terms of the simple algebraic functions. As examples, the numerical results for the sound pressure field are presented for the uniform rectangular piston transducer, in a good agreement with those directly evaluated from the Fresnel integral. A wide applicability of this approach is discussed in treatment of the ultrasonic field radiation problem for a large and important group of piston sources in acoustics.展开更多
Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most ca...Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most cases,the contact between asperities within an interface takes the form of lateral contact rather than peak contact.Regions devoid of contact asperities are filled with lubricating oil.However,conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth,rigid plane.These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance.To address this issue,we have developed a novel EHL interface model comprising two rough surfaces.This model allows us to explore the influence of asperity height,contact angle,and contact azimuth angle on EHL interface performance.展开更多
基金The first author would like to thank the supports of the NARGS, IRGS and AAS grants of Australia, and the National Science Foundation grants (No. 51574060 and No. 51079017) of China, in which the first author is the intemational collaborator. The academic visits of the third and fourth authors to the University of Tasmania are partly supported by a PhD visiting scholarship and an academic visiting scholarship, respectively, provided by the China Scholarship Council, which are greatly appreciated.
文摘A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints.
基金funded by the Research Council of Norway(Grant No.244029)。
文摘The location and geometry of large-scale asperity present at the foundation of concrete gravity dams and buttress dams affect the shear resistance of the concrete-rock interface.However,the parameters describing the frictional resistance of the interface usually do not account for these asperities.This could result in an underestimate of the peak shear stre ngth,which leads to significantly conservative design for new dams or unnecessary stability enhancing measures for existing ones.The aim of this work was to investigate the effect of the location of first-order asperity on the peak shear strength of a concrete-rock interface under eccentric load and the model discrepancy associated with the commonly used rigid body methods for calculating the factor of safety(FS)against sliding.For this,a series of direct and eccentric shear tests under constant normal load(CNL)was carried out on concrete-rock samples.The peak shear strengths measured in the tests were compared in terms of asperity location and with the predicted values from analytical rigid body methods.The results showed that the large-scale asperity under eccentric load significantly affected the peak shear strength.Furthermore,unlike the conventional assumption of sliding or shear failure of an asperity in direct shear,under the effect of eccentric shear load,a tensile failure in the rock or in the concrete could occur,resulting in a lower shear strength compared with that of direct shear tests.These results could have important implications for assessment of the FS against sliding failure in the concrete-rock interface.
基金This work is supported by the National Key Research and Development Plan of China under Grants No.2018YFC1503604the National Natural Science Foundation of China under Grants No.41721003,No.42074007the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,Wuhan University,No.19-01-08。
文摘As an important model for explaining the seismic rupture mode,the asperity model plays an important role in studying the stress accumulation of faults and the location of earthquake initiation.Taking Qilian-Haiyuan fault as an example,this paper combines geodetic method and b-value method to propose a multi-source observation data fusion detection method that accurately determines the asperity boundary named dual threshold search method.The method is based on the criterion that the b-value asperity boundary should be most consistent with the slip deficit rate asperity boundary.Then the optimal threshold combination of slip deficit rate and b-value is obtained through threshold search,which can be used to determine the boundary of the asperity.Based on this method,the study finds that there are four potential asperities on the Qilian-Haiyuan fault:two asperities(A1 and A2)are on the Tuolaishan segment and the other two asperities(B and C)are on Lenglongling segment and Jinqianghe segment,respectively.Among them,the lengths of asperities A1 and A2 on Tuolaishan segment are 17.0 km and 64.8 km,respectively.And the lower boundaries are 5.5 km and 15.5 km,respectively;The length of asperity B on Lenglongling segment is 70.7 km,and the lower boundary is 10.2 km.The length of asperity C on Jinqianghe segment is 42.3 km,and the lower boundary is 8.3 km.
基金supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)111 Project(Grant No.B13044)Northwestern Polytechnical University Foundation for Fundamental Research,China(Grant No.JC20110249)
文摘Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.51705142,51535012)Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ3162).
文摘The peak identification scheme based method(three-point definition)and the spectral moments based method(spectral moment approach)are both widely used for asperity peak modeling in tribology.To discover the differences between the two methods,a great number of rough surface profile samples with various statistical distributions are first randomly generated using FFT.Then the distribution parameters of asperity peaks are calculated for the generated samples with both methods.The obtained results are compared and verified by experiment.The variation rules of the differences between the two methods with statistical characteristics of rough surfaces are investigated.To explain for the discovered differences,the assumptions by spectral moment approach that the joint distribution of surface height,slope and curvature is normal and that the height distribution of asperities is Gaussian,are examined.The results show that it is unreasonable to assume a joint normal distribution without inspecting the correlation pattern of[z],[z′]and[z′′],and that the height distribution of asperities is not exactly Gaussian before correlation length of rough surface increases to a certain extent,20 for instance.
基金The National Key Research and Development Project(No.2019YFB2006402)the Open Fund Project of Key Laboratory of Intelligent Conveying Technology and Device,Hubei Polytechnic University.
文摘A new hybrid numerical method that couples the dynamic slider-crank mechanism(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effect of micro asperity contact on the tribological properties of a CB.In the hybrid model,the dynamic equations of the SCM are established based on the Newton method,while the lubrication equations of the CB are established on the basis of the Reynolds equation.Experimental data of the engine are also used in simulation analyses to enhance the reliability of the results.The load-bearing capacity(LBC)and friction force of the CB are selected as objective functions.Results show that the LBC has a negligible effect on the tribological properties of the CB,but the friction force greatly affects the resistance of the bearing under different radial clearances and surface roughness values.In particular,the maximum friction force in the asperity contact region accounts for 40.5%of the maximum total friction force at a radial clearance of 5μm and 77.7%of the maximum total friction of the CB with a surface roughness of 10μm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074038 and 11374051
文摘An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the ~esnel field integral for rectangular symmetric sources. From a known result that the circle or rectangle function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel Fourier transform. Two expansions are together inserted in this field integral, it is then expressible in terms of the simple algebraic functions. As examples, the numerical results for the sound pressure field are presented for the uniform rectangular piston transducer, in a good agreement with those directly evaluated from the Fresnel integral. A wide applicability of this approach is discussed in treatment of the ultrasonic field radiation problem for a large and important group of piston sources in acoustics.
基金supported by the National Natural Science Foundation of China(No.52005401,No.52375127)the Cultivation Scientific Research Project of Panzhihua University(2021PY001)+1 种基金the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province(2022CL15)the Project for Science and Technology Plan of Henan Province(212102210445).
文摘Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most cases,the contact between asperities within an interface takes the form of lateral contact rather than peak contact.Regions devoid of contact asperities are filled with lubricating oil.However,conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth,rigid plane.These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance.To address this issue,we have developed a novel EHL interface model comprising two rough surfaces.This model allows us to explore the influence of asperity height,contact angle,and contact azimuth angle on EHL interface performance.