The three most widely used methods for reconstructing the underlying time series via the recurrence plots (RPs) of a dynamical system are compared with each other in this paper. We aim to reconstruct a toy series, a...The three most widely used methods for reconstructing the underlying time series via the recurrence plots (RPs) of a dynamical system are compared with each other in this paper. We aim to reconstruct a toy series, a periodical series, a random series, and a chaotic series to compare the effectiveness of the most widely used typical methods in terms of signal correlation analysis. The application of the most effective algorithm to the typical chaotic Lorenz system verifies the correctness of such an effective algorithm. It is verified that, based on the unthresholded RPs, one can reconstruct the original attractor by choosing different RP thresholds based on the Hirata algorithm. It is shown that, in real applications, it is possible to reconstruct the underlying dynamics by using quite little information from observations of real dynamical systems. Moreover, rules of the threshold chosen in the algorithm are also suggested.展开更多
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for...There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.展开更多
Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classificati...Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation.展开更多
Middle ear surgery techniques have enabled to improve hearing destroyed by a disease. Despite huge improvement in instrumentation and techniques the results of hearing improvement surgery are still difficult to predic...Middle ear surgery techniques have enabled to improve hearing destroyed by a disease. Despite huge improvement in instrumentation and techniques the results of hearing improvement surgery are still difficult to predict. This paper presents the results of vibrations measurements in a human middle ear obtained at the Medical University of Lublin. Vibrations of the stapes in the case of the intact ossicular chain, after cement incus rebuilding and incus interpositions are compared each other. In this aim a new approach of ossicles vibrations observation is introduced in order to complete information obtained from classical approach which bases on the transfer function. Measurements of ossicular chain vibrations are performed on fresh human temporal bone specimen using the laser doppler vibrometer. Next, after classical research, the extended analysis with the recurrence plots technique is performed.展开更多
The use of Recurrence plots have been extensively used in various fields. In this work, Recurrence Plots (RPs) investigates the changes in the non-linear behaviour of urban air pollution using large datasets of raw da...The use of Recurrence plots have been extensively used in various fields. In this work, Recurrence Plots (RPs) investigates the changes in the non-linear behaviour of urban air pollution using large datasets of raw data (hourly). This analysis has not been used before to extract information from large datasets for this type non-linear problem. Two different approaches have been used to tackle this problem. The first approach is to show results according to monitoring network. The second approach is to show the results by particle type. This analysis shows the feasibility of using Recurrence Analysis for pollution monitoring and control.展开更多
We construct recurrence plots(RPs)and conduct recurrence quantification analysis(RQA)to investigate the dynamic properties of the new Center for Financial Stability(CFS)Divisia monetary aggregates for the United State...We construct recurrence plots(RPs)and conduct recurrence quantification analysis(RQA)to investigate the dynamic properties of the new Center for Financial Stability(CFS)Divisia monetary aggregates for the United States.In this study,we use the lat-est vintage of Divisia aggregates,maintained within CFS.We use monthly data,from January 1967 to December 2020,which is a sample period that includes the extreme economic events of the 2007–2009 global financial crisis.We then make comparisons between narrow and broad Divisia money measures and find evidence of a nonlinear but reserved possible chaotic explanation of their origin.The application of RPs to broad Divisia monetary aggregates encompasses an additional drift structure around the global financial crisis in 2008.Applying the moving window RQA to the growth rates of narrow and broad Divisia monetary aggregates,we identify periods of changes in data-generating processes and associate such changes to monetary policy regimes and financial innovations that occurred during those times.展开更多
In this paper, Recurrence Quantification Analysis (RQA) is set as a practical nonlinear data tool to establish and compare surface roughness (Ra) through percentage parameters of a dynamical system: Recurrence (%REC),...In this paper, Recurrence Quantification Analysis (RQA) is set as a practical nonlinear data tool to establish and compare surface roughness (Ra) through percentage parameters of a dynamical system: Recurrence (%REC), Determinism (%DET) and Laminarity (%LAM). Variations in surface roughness of different machining procedures from a typical metallic casting comparator are obtained from scattering intensity of a laser beam and expressed as changes in the statistics of speckle patterns and profiles optical properties. The application of the analysis (RQA) by Recurrence Plots (RPs), allowed to distinguish between machining procedures, highlighting features that other methods are unable to detect.展开更多
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ...The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.展开更多
基金Project supported by the Key Project of Ministry of Education of China (Grant No. 2010141)the National Natural Science Foundation of China (Grant No. 61203159)
文摘The three most widely used methods for reconstructing the underlying time series via the recurrence plots (RPs) of a dynamical system are compared with each other in this paper. We aim to reconstruct a toy series, a periodical series, a random series, and a chaotic series to compare the effectiveness of the most widely used typical methods in terms of signal correlation analysis. The application of the most effective algorithm to the typical chaotic Lorenz system verifies the correctness of such an effective algorithm. It is verified that, based on the unthresholded RPs, one can reconstruct the original attractor by choosing different RP thresholds based on the Hirata algorithm. It is shown that, in real applications, it is possible to reconstruct the underlying dynamics by using quite little information from observations of real dynamical systems. Moreover, rules of the threshold chosen in the algorithm are also suggested.
文摘There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.
基金supported by the National Defense Science and Technology Outstanding Youth Science Fund Project(2018-JCJQ-ZQ-023)the Hunan Provincial Natural Science Foundation of Innovation Research Group Project(2019JJ10004)。
文摘Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation.
基金supported by the Polish Ministry of Science and Higher Education (N403 065 32/3451,NN518425936)
文摘Middle ear surgery techniques have enabled to improve hearing destroyed by a disease. Despite huge improvement in instrumentation and techniques the results of hearing improvement surgery are still difficult to predict. This paper presents the results of vibrations measurements in a human middle ear obtained at the Medical University of Lublin. Vibrations of the stapes in the case of the intact ossicular chain, after cement incus rebuilding and incus interpositions are compared each other. In this aim a new approach of ossicles vibrations observation is introduced in order to complete information obtained from classical approach which bases on the transfer function. Measurements of ossicular chain vibrations are performed on fresh human temporal bone specimen using the laser doppler vibrometer. Next, after classical research, the extended analysis with the recurrence plots technique is performed.
文摘The use of Recurrence plots have been extensively used in various fields. In this work, Recurrence Plots (RPs) investigates the changes in the non-linear behaviour of urban air pollution using large datasets of raw data (hourly). This analysis has not been used before to extract information from large datasets for this type non-linear problem. Two different approaches have been used to tackle this problem. The first approach is to show results according to monitoring network. The second approach is to show the results by particle type. This analysis shows the feasibility of using Recurrence Analysis for pollution monitoring and control.
文摘We construct recurrence plots(RPs)and conduct recurrence quantification analysis(RQA)to investigate the dynamic properties of the new Center for Financial Stability(CFS)Divisia monetary aggregates for the United States.In this study,we use the lat-est vintage of Divisia aggregates,maintained within CFS.We use monthly data,from January 1967 to December 2020,which is a sample period that includes the extreme economic events of the 2007–2009 global financial crisis.We then make comparisons between narrow and broad Divisia money measures and find evidence of a nonlinear but reserved possible chaotic explanation of their origin.The application of RPs to broad Divisia monetary aggregates encompasses an additional drift structure around the global financial crisis in 2008.Applying the moving window RQA to the growth rates of narrow and broad Divisia monetary aggregates,we identify periods of changes in data-generating processes and associate such changes to monetary policy regimes and financial innovations that occurred during those times.
文摘In this paper, Recurrence Quantification Analysis (RQA) is set as a practical nonlinear data tool to establish and compare surface roughness (Ra) through percentage parameters of a dynamical system: Recurrence (%REC), Determinism (%DET) and Laminarity (%LAM). Variations in surface roughness of different machining procedures from a typical metallic casting comparator are obtained from scattering intensity of a laser beam and expressed as changes in the statistics of speckle patterns and profiles optical properties. The application of the analysis (RQA) by Recurrence Plots (RPs), allowed to distinguish between machining procedures, highlighting features that other methods are unable to detect.
基金Project(2015SK1002) supported by Key Projects of Hunan Province Science and Technology Plan,China
文摘The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.