Recurrent event data frequently occur in longitudinal studies, and it is often of interest to estimate the effects of covariates on the recurrent event rate. This paper considers a class of semiparametric transformati...Recurrent event data frequently occur in longitudinal studies, and it is often of interest to estimate the effects of covariates on the recurrent event rate. This paper considers a class of semiparametric transformation rate models for recurrent event data, which uses an additive AMen model as its covariate dependent baseline. The new models are flexible in that they allow for both additive and multiplicative covariate effects, and some covariate effects are allowed to be nonparametric and time-varying. An estimating procedure is proposed for parameter estimation, and the resulting estimators are shown to be consistent and asymptotically normal. Simulation studies and a real data analysis demonstrate that the proposed method performs well and is appropriate for practical use.展开更多
Recurrent events data with a terminal event (e.g., death) often arise in clinical and ob- servational studies. Variable selection is an important issue in all regression analysis. In this paper, the authors first pr...Recurrent events data with a terminal event (e.g., death) often arise in clinical and ob- servational studies. Variable selection is an important issue in all regression analysis. In this paper, the authors first propose the estimation methods to select the significant variables, and then prove the asymptotic behavior of the proposed estimator. Furthermore, the authors discuss the computing algorithm to assess the proposed estimator via the linear function approximation and generalized cross validation method for determination of the tuning parameters. Finally, the finite sample estimation for the asymptotical covariance matrix is also proposed.展开更多
Recurrent event gap times data frequently arise in biomedical studies and often more than one type of event is of interest. To evaluate the effects of covariates on the marginal recurrent event hazards functions, ther...Recurrent event gap times data frequently arise in biomedical studies and often more than one type of event is of interest. To evaluate the effects of covariates on the marginal recurrent event hazards functions, there exist two types of hazards models: the multiplicative hazards model and the additive hazards model. In the paper, we propose a more flexible additive-multiplicative hazards model for multiple type of recurrent gap times data, wherein some covariates are assumed to be additive while others are multiplicative. An estimating equation approach is presented to estimate the regression parameters. We establish asymptotic properties of the proposed estimators.展开更多
In this paper, we consider an inference method for recurrent event data in which the primary exposure covariate is assessed only in a validation set, while as an auxiliary covariate for the main exposure is available ...In this paper, we consider an inference method for recurrent event data in which the primary exposure covariate is assessed only in a validation set, while as an auxiliary covariate for the main exposure is available for the full cohort. Additive rate model is considered. The existing estimating equations in the absence of primary exposure are corrected by taking use of the validation data and auxiliary information, which yield consistent and asymptotically normal estimators of the regression parameters. The estimated baseline mean process is shown to converge weakly to a zero-mean Gaussian process. Extensive simulations are conducted to evaluate finite sample performance.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11301545, 11501578 and 11501579)
文摘Recurrent event data frequently occur in longitudinal studies, and it is often of interest to estimate the effects of covariates on the recurrent event rate. This paper considers a class of semiparametric transformation rate models for recurrent event data, which uses an additive AMen model as its covariate dependent baseline. The new models are flexible in that they allow for both additive and multiplicative covariate effects, and some covariate effects are allowed to be nonparametric and time-varying. An estimating procedure is proposed for parameter estimation, and the resulting estimators are shown to be consistent and asymptotically normal. Simulation studies and a real data analysis demonstrate that the proposed method performs well and is appropriate for practical use.
文摘Recurrent events data with a terminal event (e.g., death) often arise in clinical and ob- servational studies. Variable selection is an important issue in all regression analysis. In this paper, the authors first propose the estimation methods to select the significant variables, and then prove the asymptotic behavior of the proposed estimator. Furthermore, the authors discuss the computing algorithm to assess the proposed estimator via the linear function approximation and generalized cross validation method for determination of the tuning parameters. Finally, the finite sample estimation for the asymptotical covariance matrix is also proposed.
基金The Science Foundation(JA12301)of Fujian Educational Committeethe Teaching Quality Project(ZL0902/TZ(SJ))of Higher Education in Fujian Provincial Education Department
文摘Recurrent event gap times data frequently arise in biomedical studies and often more than one type of event is of interest. To evaluate the effects of covariates on the marginal recurrent event hazards functions, there exist two types of hazards models: the multiplicative hazards model and the additive hazards model. In the paper, we propose a more flexible additive-multiplicative hazards model for multiple type of recurrent gap times data, wherein some covariates are assumed to be additive while others are multiplicative. An estimating equation approach is presented to estimate the regression parameters. We establish asymptotic properties of the proposed estimators.
基金Supported by the National Natural Science Foundation of China(No.11571263,11371299)
文摘In this paper, we consider an inference method for recurrent event data in which the primary exposure covariate is assessed only in a validation set, while as an auxiliary covariate for the main exposure is available for the full cohort. Additive rate model is considered. The existing estimating equations in the absence of primary exposure are corrected by taking use of the validation data and auxiliary information, which yield consistent and asymptotically normal estimators of the regression parameters. The estimated baseline mean process is shown to converge weakly to a zero-mean Gaussian process. Extensive simulations are conducted to evaluate finite sample performance.