Chaos game representation (CGR) of DNA sequences and linked protein sequences from genomes was proposed by Jeffrey (1990) and Yu et al. (2004), respectively. In this paper, we consider the CGR of three kinds of sequen...Chaos game representation (CGR) of DNA sequences and linked protein sequences from genomes was proposed by Jeffrey (1990) and Yu et al. (2004), respectively. In this paper, we consider the CGR of three kinds of sequences from complete genomes: whole genome DNA sequences, linked coding DNA sequences and linked protein sequences. Some fractal patterns are found in these CGRs. A recurrent iterated function systems (RIFS) model is proposed to simulate the CGRs of these sequences from genomes and their induced measures. Numerical results on 50 genomes show that the RIFS model can simulate very well the CGRs and their induced measures. The parameters estimated in the RIFS model reflect information on species classification.展开更多
We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph model...We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize the graph models using stars and cliques: both algorithm construct graph sequences such that the next iteration is always based on n replicas of the current iteration, where n is the size of the initial graph structure, being a star or a clique. We analyze these self-similar graph sequences using IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor set for the description of the fixed set of these IMSs, which we interpret as the limit object of the analyzed self-similar networks.展开更多
A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems...A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces-satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.展开更多
Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, th...Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.展开更多
Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function...Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu and A. Chakraborty, we present some new iterated function systems by using the so-called generalized contractive mappings, which will also cover a large range of mappings. Our purpose is to prove the existence and uniqueness of attractors for such class of iterated function systems by virtue of a Banach-like fixed point theorem concerning generalized contractive mappings.展开更多
In this paper, we present some fixed point theorems of iterated function systems consisting of α-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function s...In this paper, we present some fixed point theorems of iterated function systems consisting of α-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function systems consisting of Banach contractive mappings in Fractal space constituted by the compact subset of generalized metric space, which is Mso extensively applied in topological dynamic system.展开更多
An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity character...An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity characteristic. By introducing the IFS into the crossover operation, the RCGA performs better searching solution with a faster convergence in a set of benchmark test functions.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos gam...Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos game representation (CGR) of randomly-linked functional protein sequences, then propose the use of the recurrent iterated function systems (RIFS) in fractal theory to simulate the measure based on their chaos game representations. This method helps to extract some features of functional protein sequences, and furthermore the biological functions of these proteins. Then multifractal analysis of the measures based on the CGRs of randomly-linked functional protein sequences are performed. We find that the CGRs have clear fractal patterns. The numerical results show that the RIFS can simulate the measure based on the CGR very well. The relative standard error and the estimated probability matrix in the RIFS do not depend on the order to link the functional protein sequences. The estimated probability matrices in the RIFS with different biological functions are evidently different. Hence the estimated probability matrices in the RIFS can be used to characterise the difference among linked functional protein sequences with different biological functions. From the values of the Dq curves, one sees that these functional protein sequences are not completely random. The Dq of all linked functional proteins studied are multifractal-like and sufficiently smooth for the Cq (analogous to specific heat) curves to be meaningful. Furthermore, the Dq curves of the measure μ based on their CCRs for different orders to link the functional protein sequences are almost identical if q 〉 0. Finally, the Ca curves of all linked functional proteins resemble a classical phase transition at a critical point.展开更多
The existence, uniqueness and non-symmetric iterative approximation of solutions for a class of systems of mixed monotone operator equations are discussed. As an application, we utilize, the results presented in this ...The existence, uniqueness and non-symmetric iterative approximation of solutions for a class of systems of mixed monotone operator equations are discussed. As an application, we utilize, the results presented in this paper to study the existence and uniqueness problems of common solutions for a class of systems of functional equations arising in dynamic programming of multistage decision processes and a class of systems of nonlinear integral equation. The results obtained in this paper not only answer an open question suggested in [3] but also generalize the corresponding results of [1],[2].展开更多
We present lower and upper bounds for the box dimension of the graphs of certain nonaffine fractal interpolation functions by generalizing the results that hold for the affine case.
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens...This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
In this paper, we construct some continuous but non-differentiable functions defined by quinary dec-imal, that are Kiesswetter-like functions. We discuss their properties, then investigate the Hausdorff dimensions of ...In this paper, we construct some continuous but non-differentiable functions defined by quinary dec-imal, that are Kiesswetter-like functions. We discuss their properties, then investigate the Hausdorff dimensions of graphs of these functions and give a detailed proof.展开更多
Fractal interpolation function (FIF) is a special type of continuous function which interpolates certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set is the graph of the...Fractal interpolation function (FIF) is a special type of continuous function which interpolates certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set is the graph of the FIF. Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) is both self-affine and non self-affine in nature depending on the free variables and constrained free variables for a generalized IFS. In this article, graph directed iterated function system for a finite number of generalized data sets is considered and it is shown that the projection of the attractors on is the graph of the CHFIFs interpolating the corresponding data sets.展开更多
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs....Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.展开更多
文摘Chaos game representation (CGR) of DNA sequences and linked protein sequences from genomes was proposed by Jeffrey (1990) and Yu et al. (2004), respectively. In this paper, we consider the CGR of three kinds of sequences from complete genomes: whole genome DNA sequences, linked coding DNA sequences and linked protein sequences. Some fractal patterns are found in these CGRs. A recurrent iterated function systems (RIFS) model is proposed to simulate the CGRs of these sequences from genomes and their induced measures. Numerical results on 50 genomes show that the RIFS model can simulate very well the CGRs and their induced measures. The parameters estimated in the RIFS model reflect information on species classification.
文摘We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize the graph models using stars and cliques: both algorithm construct graph sequences such that the next iteration is always based on n replicas of the current iteration, where n is the size of the initial graph structure, being a star or a clique. We analyze these self-similar graph sequences using IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor set for the description of the fixed set of these IMSs, which we interpret as the limit object of the analyzed self-similar networks.
文摘A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces-satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.
文摘Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.
基金Partially supported by National Natural Science Foundation of China (No. 10961003)
文摘Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu and A. Chakraborty, we present some new iterated function systems by using the so-called generalized contractive mappings, which will also cover a large range of mappings. Our purpose is to prove the existence and uniqueness of attractors for such class of iterated function systems by virtue of a Banach-like fixed point theorem concerning generalized contractive mappings.
基金The NSF(11271150)of ChinaChina Government Scholarship
文摘In this paper, we present some fixed point theorems of iterated function systems consisting of α-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function systems consisting of Banach contractive mappings in Fractal space constituted by the compact subset of generalized metric space, which is Mso extensively applied in topological dynamic system.
文摘An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity characteristic. By introducing the IFS into the crossover operation, the RCGA performs better searching solution with a faster convergence in a set of benchmark test functions.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
基金Project partially supported by the National Natural Science Foundation of China (Grant No.30570426)the Chinese Program for New Century Excellent Talents in University (Grant No.NCET-08-06867)+1 种基金Fok Ying Tung Education Foundation (Grant No.101004)Australian Research Council (Grant No.DP0559807)
文摘Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos game representation (CGR) of randomly-linked functional protein sequences, then propose the use of the recurrent iterated function systems (RIFS) in fractal theory to simulate the measure based on their chaos game representations. This method helps to extract some features of functional protein sequences, and furthermore the biological functions of these proteins. Then multifractal analysis of the measures based on the CGRs of randomly-linked functional protein sequences are performed. We find that the CGRs have clear fractal patterns. The numerical results show that the RIFS can simulate the measure based on the CGR very well. The relative standard error and the estimated probability matrix in the RIFS do not depend on the order to link the functional protein sequences. The estimated probability matrices in the RIFS with different biological functions are evidently different. Hence the estimated probability matrices in the RIFS can be used to characterise the difference among linked functional protein sequences with different biological functions. From the values of the Dq curves, one sees that these functional protein sequences are not completely random. The Dq of all linked functional proteins studied are multifractal-like and sufficiently smooth for the Cq (analogous to specific heat) curves to be meaningful. Furthermore, the Dq curves of the measure μ based on their CCRs for different orders to link the functional protein sequences are almost identical if q 〉 0. Finally, the Ca curves of all linked functional proteins resemble a classical phase transition at a critical point.
基金Supported by National Natural Science Foundation of China
文摘The existence, uniqueness and non-symmetric iterative approximation of solutions for a class of systems of mixed monotone operator equations are discussed. As an application, we utilize, the results presented in this paper to study the existence and uniqueness problems of common solutions for a class of systems of functional equations arising in dynamic programming of multistage decision processes and a class of systems of nonlinear integral equation. The results obtained in this paper not only answer an open question suggested in [3] but also generalize the corresponding results of [1],[2].
文摘We present lower and upper bounds for the box dimension of the graphs of certain nonaffine fractal interpolation functions by generalizing the results that hold for the affine case.
基金supported by the National Natural Science Foundation of China(60674090)Shandong Natural Science Foundation(ZR2017QF016)
文摘This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.
文摘In this paper, we construct some continuous but non-differentiable functions defined by quinary dec-imal, that are Kiesswetter-like functions. We discuss their properties, then investigate the Hausdorff dimensions of graphs of these functions and give a detailed proof.
文摘Fractal interpolation function (FIF) is a special type of continuous function which interpolates certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set is the graph of the FIF. Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) is both self-affine and non self-affine in nature depending on the free variables and constrained free variables for a generalized IFS. In this article, graph directed iterated function system for a finite number of generalized data sets is considered and it is shown that the projection of the attractors on is the graph of the CHFIFs interpolating the corresponding data sets.
文摘Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.