Objective:To assess prognostic factors and validate the effectiveness of recursive partitioning analysis (RPA) classes and graded prognostic assessment (GPA) in 290 non-small cell lung cancer (NSCLC) patients w...Objective:To assess prognostic factors and validate the effectiveness of recursive partitioning analysis (RPA) classes and graded prognostic assessment (GPA) in 290 non-small cell lung cancer (NSCLC) patients with brain metastasis (BM).Methods:From Jan 2008 to Dec 2009,the clinical data of 290 NSCLC cases with BM treated with multiple modalities including brain irradiation,systemic chemotherapy and tyrosine kinase inhibitors (TKIs) in two institutes were analyzed.Survival was estimated by Kaplan-Meier method.The differences of survival rates in subgroups were assayed using log-rank test.Multivariate Cox's regression method was used to analyze the impact of prognostic factors on survival.Two prognostic indexes models (RPA and GPA) were validated respectively.Results:All patients were followed up for 1-44 months,the median survival time after brain irradiation and its corresponding 95% confidence interval (95% CI) was 14 (12.3-15.8) months.1-,2-and 3-year survival rates in the whole group were 56.0%,28.3%,and 12.0%,respectively.The survival curves of subgroups,stratified by both RPA and GPA,were significantly different (P0.001).In the multivariate analysis as RPA and GPA entered Cox's regression model,Karnofsky performance status (KPS) ≥ 70,adenocarcinoma subtype,longer administration of TKIs remained their prognostic significance,RPA classes and GPA also appeared in the prognostic model.Conclusion:KPS ≥70,adenocarcinoma subtype,longer treatment of molecular targeted drug,and RPA classes and GPA are the independent prognostic factors affecting the survival rates of NSCLC patients with BM.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
Background:The role ofpostradiation systemic therapy in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) was controversial.Thus,we explored the role of Radiation Therapy Oncology Group recur...Background:The role ofpostradiation systemic therapy in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) was controversial.Thus,we explored the role of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG-RPA) and graded prognostic assessment (GPA) in identifying population who may benefit from postradiation systemic therapy.Methods:The clinical data of NSCLC patients with documented BM from August 2007 to April 2015 of two hospitals were studied retrospectively.Cox regression was used for multivariate analysis.Survival of patients with or without postradiation systemic therapy was compared in subgroups stratified according to RTOG-RPA or GPA.Results:Of 216 included patients,67.1% received stereotactic radiosurgery (SRS),24.1% received whole-brain radiation therapy (WBRT),and 8.8% received both.After radiotherapy,systemic therapy was administered in 58.3% of patients.Multivariate analysis found that postradiation systemic therapy (yes vs.no) (hazard ratio [HR] =0.36 l,95% confidence interval [CI] =0.202-0.648,P =0.001),radiation technique (SRS vs.WBRT) (HR =0.462,95% CI =0.238-0.849,P =0.022),extracranial metastasis (yes vs.no) (HR =3.970,95% CI =1.757-8.970,P =0.001),and Kamofsky performance status (〈70 vs.≥70) (HR =5.338,95% CI =2.829-10.072,P 〈 0.001) were independent factors for survival.Further analysis found that subsequent tyrosine kinase inhibitor (TKI) therapy could significantly reduce the risk of mortality of patients in RTOG-RPA Class IⅡ (HR =0.411,95% CI =0.183-).923,P =0.031) or with a GPA score of 1.5-2.5 (HR =0.420,95% CI =0.182-0.968,P =0.042).However,none of the subgroups stratified according to RTOG-RPA or GPA benefited from the additional conventional chemotherapy.Conclusion:RTOG-RPA and GPA may be useful to identify beneficial populations in NSCLC patients with BM ifTKIs were chosen as postradiation systemic therapy.展开更多
Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interferenc...Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interference, but collecting EOG signals during a long-term EEG recording is inconvenient and uncomfortable for the subject. To remove ocular artifacts from EEG in brain-computer interfaces (BCIs), a method named spatial constraint independent component analysis based recursive least squares (SCICA-RLS) is proposed. The method consists of two stages. In the first stage, independent component analysis (ICA) is used to decompose multiple EEG channels into an equal number of independent components (ICs). Ocular ICs are identified by an automatic artifact detection method based on kurtosis. Then empirical mode decomposition (EMD) is employed to remove any cerebral activity from the identified ocular ICs to obtain exact altifact ICs. In the second stage, first, SCICA applies exact artifact ICs obtained in the first stage as a constraint to extract artifact ICs from the given EEG signal. These extracted ICs are called spatial constraint ICs (SC-ICs). Then the RLS based adaptive filter uses SC-ICs as reference signals to reduce interference, which avoids the need for parallel EOG recordings. In addition, the proposed method has the ability of fast computation as it is not necessary for SCICA to identify all ICs like ICA. Based on the EEG data recorded from seven subjects, the new approach can lead to average classification accuracies of 3.3% and 12.6% higher than those of the standard ICA and raw EEG, respectively. In addition, the proposed method has 83.5% and 83.8% reduction in time-consumption compared with the standard ICA and ICA-RLS, respectively, which demonstrates a better and faster OA reduction.展开更多
Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recur...Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.展开更多
文摘Objective:To assess prognostic factors and validate the effectiveness of recursive partitioning analysis (RPA) classes and graded prognostic assessment (GPA) in 290 non-small cell lung cancer (NSCLC) patients with brain metastasis (BM).Methods:From Jan 2008 to Dec 2009,the clinical data of 290 NSCLC cases with BM treated with multiple modalities including brain irradiation,systemic chemotherapy and tyrosine kinase inhibitors (TKIs) in two institutes were analyzed.Survival was estimated by Kaplan-Meier method.The differences of survival rates in subgroups were assayed using log-rank test.Multivariate Cox's regression method was used to analyze the impact of prognostic factors on survival.Two prognostic indexes models (RPA and GPA) were validated respectively.Results:All patients were followed up for 1-44 months,the median survival time after brain irradiation and its corresponding 95% confidence interval (95% CI) was 14 (12.3-15.8) months.1-,2-and 3-year survival rates in the whole group were 56.0%,28.3%,and 12.0%,respectively.The survival curves of subgroups,stratified by both RPA and GPA,were significantly different (P0.001).In the multivariate analysis as RPA and GPA entered Cox's regression model,Karnofsky performance status (KPS) ≥ 70,adenocarcinoma subtype,longer administration of TKIs remained their prognostic significance,RPA classes and GPA also appeared in the prognostic model.Conclusion:KPS ≥70,adenocarcinoma subtype,longer treatment of molecular targeted drug,and RPA classes and GPA are the independent prognostic factors affecting the survival rates of NSCLC patients with BM.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘Background:The role ofpostradiation systemic therapy in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) was controversial.Thus,we explored the role of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG-RPA) and graded prognostic assessment (GPA) in identifying population who may benefit from postradiation systemic therapy.Methods:The clinical data of NSCLC patients with documented BM from August 2007 to April 2015 of two hospitals were studied retrospectively.Cox regression was used for multivariate analysis.Survival of patients with or without postradiation systemic therapy was compared in subgroups stratified according to RTOG-RPA or GPA.Results:Of 216 included patients,67.1% received stereotactic radiosurgery (SRS),24.1% received whole-brain radiation therapy (WBRT),and 8.8% received both.After radiotherapy,systemic therapy was administered in 58.3% of patients.Multivariate analysis found that postradiation systemic therapy (yes vs.no) (hazard ratio [HR] =0.36 l,95% confidence interval [CI] =0.202-0.648,P =0.001),radiation technique (SRS vs.WBRT) (HR =0.462,95% CI =0.238-0.849,P =0.022),extracranial metastasis (yes vs.no) (HR =3.970,95% CI =1.757-8.970,P =0.001),and Kamofsky performance status (〈70 vs.≥70) (HR =5.338,95% CI =2.829-10.072,P 〈 0.001) were independent factors for survival.Further analysis found that subsequent tyrosine kinase inhibitor (TKI) therapy could significantly reduce the risk of mortality of patients in RTOG-RPA Class IⅡ (HR =0.411,95% CI =0.183-).923,P =0.031) or with a GPA score of 1.5-2.5 (HR =0.420,95% CI =0.182-0.968,P =0.042).However,none of the subgroups stratified according to RTOG-RPA or GPA benefited from the additional conventional chemotherapy.Conclusion:RTOG-RPA and GPA may be useful to identify beneficial populations in NSCLC patients with BM ifTKIs were chosen as postradiation systemic therapy.
基金Project supported by the National Natural Science Foundation of China (Nos. 31100709 and 60975079) and the Shanghai Pujiang Program, China (No. 14PJ1431300)
文摘Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interference, but collecting EOG signals during a long-term EEG recording is inconvenient and uncomfortable for the subject. To remove ocular artifacts from EEG in brain-computer interfaces (BCIs), a method named spatial constraint independent component analysis based recursive least squares (SCICA-RLS) is proposed. The method consists of two stages. In the first stage, independent component analysis (ICA) is used to decompose multiple EEG channels into an equal number of independent components (ICs). Ocular ICs are identified by an automatic artifact detection method based on kurtosis. Then empirical mode decomposition (EMD) is employed to remove any cerebral activity from the identified ocular ICs to obtain exact altifact ICs. In the second stage, first, SCICA applies exact artifact ICs obtained in the first stage as a constraint to extract artifact ICs from the given EEG signal. These extracted ICs are called spatial constraint ICs (SC-ICs). Then the RLS based adaptive filter uses SC-ICs as reference signals to reduce interference, which avoids the need for parallel EOG recordings. In addition, the proposed method has the ability of fast computation as it is not necessary for SCICA to identify all ICs like ICA. Based on the EEG data recorded from seven subjects, the new approach can lead to average classification accuracies of 3.3% and 12.6% higher than those of the standard ICA and raw EEG, respectively. In addition, the proposed method has 83.5% and 83.8% reduction in time-consumption compared with the standard ICA and ICA-RLS, respectively, which demonstrates a better and faster OA reduction.
基金Project supported by the National Basic Research Program (973) of China (No. 2009CB320600) the National Natural Science Foun-dation of China (No. 60974057)
文摘Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.