期刊文献+
共找到646篇文章
< 1 2 33 >
每页显示 20 50 100
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
1
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(rnn)
下载PDF
FOUR-PARAMETER AUTOMATIC TRANSMISSION TECHNOLOGY FOR CONSTRUCTION VEHICLE BASED ON ELMAN RECURSIVE NEURAL NETWORK 被引量:6
2
作者 ZHANG Hongyan ZHAO Dingxuan +1 位作者 TANG Xinxing Ding Chunfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期20-24,共5页
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh... From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle. 展开更多
关键词 Construction vehicle Hydraulic transmission and control Automatic transmission Elman recursive neural network
下载PDF
Remaining Useful Life Prediction for a Roller in a Hot Strip Mill Based on Deep Recurrent Neural Networks 被引量:10
3
作者 Ruihua Jiao Kaixiang Peng Jie Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1345-1354,共10页
Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv... Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods. 展开更多
关键词 Hot strip mill prognostics and health management(PHM) recurrent neural network(rnn) remaining useful life(RUL) roller management.
下载PDF
New Stability Criteria for Recurrent Neural Networks with a Time-varying Delay 被引量:2
4
作者 Hong-Bing Zeng Shen-Ping Xiao Bin Liu 《International Journal of Automation and computing》 EI 2011年第1期128-133,共6页
This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore... This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods. 展开更多
关键词 STABILITY recurrent neural networks rnns) time-varying delay DELAY-DEPENDENT augmented Lyapunov-Krasovskii functional.
下载PDF
Recursive recurrent neural network:A novel model for manipulator control with different levels of physical constraints 被引量:3
5
作者 Zhan Li Shuai Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期622-634,共13页
Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinemati... Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinematic control of manipulators.Due to physical limitations and actuation saturation of manipulator joints,the involvement of joint constraints for kinematic control of manipulators is essential and critical.However,current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints,and to the best of our knowledge,methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported.In this study,for the first time,a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints,and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders.The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution.Simulation results further demonstrate the effectiveness of the proposed method in end‐effector path tracking control under different levels of joint constraints based on the Kuka manipulator system.Comparisons with other methods such as the pseudoinverse‐based method and conventional recurrent neural network method substantiate the superiority of the proposed method. 展开更多
关键词 dynamic neural networks recursive computation robotic manipulator
下载PDF
基于RF-RNN模型的DNS隐蔽信道检测方法
6
作者 冯燕茹 《信息与电脑》 2024年第3期158-160,共3页
为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类... 为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类,通过深度学习方法挖掘更高阶的特征表示。实验结果表明,与单一模型相比,该方法在检测准确性和健壮性方面均取得了显著提升。 展开更多
关键词 域名系统(DNS) 随机森林(RF) 循环神经网络(rnn)
下载PDF
Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks 被引量:1
7
作者 ZHANG Jian-hai ZHANG Sen-lin LIU Mei-qin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1912-1920,共9页
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t... The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results. 展开更多
关键词 Standard neural network model (SNNM) Robust exponential stability Recurrent neural networks rnns) DISCRETE-TIME Time-delay system Linear matrix inequality (LMI)
下载PDF
Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm 被引量:3
8
作者 D.Vidyabharathi V.Mohanraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2559-2573,共15页
For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti... For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset. 展开更多
关键词 Deep learning deep neural network(DNN) learning rates(LR) recurrent neural network(rnn) cyclical learning rate(CLR) hyperbolic tangent decay(HTD) toggle between hyperbolic tangent decay and triangular mode with restarts(T-HTR) teaching learning based optimization(TLBO)
下载PDF
Global stability of interval recurrent neural networks 被引量:1
9
作者 袁铸钢 刘志远 +1 位作者 裴润 申涛 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期382-386,共5页
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus... The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results. 展开更多
关键词 recurrent neural networksrnns) interval systems linear matrix inequalities(LMI) global exponential stability
下载PDF
Modelling missile motion system using neural networks
10
作者 闫纪红 王子才 史小平 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第3期45-48,共4页
The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the... The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems. 展开更多
关键词 neural networks identification recursive pedictive or method nonlinear SYSTEM MODELLING MISSILE MOTION SYSTEM
下载PDF
NONLINEAR MODELING AND CONTROLLING OF ARTIFICIAL MUSCLE SYSTEM USING NEURAL NETWORKS
11
作者 Tian Sheping Ding Guoqing +1 位作者 Yan Detian Lin Liangming Department of Information Measurement and Instrumentation,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期306-310,共5页
The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is... The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme. 展开更多
关键词 Artificial muscle neural networks recursive prediction error algorithm Nonlinear modeling and controlling
下载PDF
A Kind of Second-Order Learning Algorithm Based on Generalized Cost Criteria in Multi-Layer Feed-Forward Neural Networks
12
作者 张长江 付梦印 金梅 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期119-124,共6页
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct... A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis. 展开更多
关键词 multi layer feed forward neural networks BP algorithm Newton recursive algorithm
下载PDF
Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network
13
作者 SUN Jingen YANG Yang 《沈阳理工大学学报》 CAS 2014年第4期87-94,共8页
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t... For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit. 展开更多
关键词 rnn neural network oil-wells power heating ENERGY-SAVING
下载PDF
基于HHO-QRNN模型的大坝变形预测方法
14
作者 李天翔 王峰 刘革瑞 《水电能源科学》 北大核心 2024年第5期117-120,116,共5页
为有效利用大坝位移数据集中的真实信息,提高预测模型精准度,缩减建模分析训练时间,提出基于卡尔曼滤波算法、完全噪声辅助聚合经验模态分解和准循环神经网络的大坝位移预测方法。首先,模型采用卡尔曼滤波算法对原始输入数据进行处理,... 为有效利用大坝位移数据集中的真实信息,提高预测模型精准度,缩减建模分析训练时间,提出基于卡尔曼滤波算法、完全噪声辅助聚合经验模态分解和准循环神经网络的大坝位移预测方法。首先,模型采用卡尔曼滤波算法对原始输入数据进行处理,提取行有效信息,消除观测噪声影响;其次,设计一种信号分解算法,从累计位移值提取出趋势项、周期项和随机项数据集,以分离不同诱发因素对于大坝位移量的影响;最后,提出一种基于改进哈里斯鹰算法优化准循环神经网络的位移预测算法,对不同数据集分别采用此算法建模预测,将预测结果对应叠加得到最终预测结果。以某水库大坝的历史位移观测数据集为例,将所提模型与其他传统预测模型进行对比分析,结果表明,该模型预测精度和训练速度等方面均有显著提升,验证了其可行性和先进性。 展开更多
关键词 大坝变形预测 哈里斯鹰优化算法 准循环神经网络 深度学习
下载PDF
Enhancing Skin Cancer Diagnosis with Deep Learning:A Hybrid CNN-RNN Approach
15
作者 Syeda Shamaila Zareen Guangmin Sun +2 位作者 Mahwish Kundi Syed Furqan Qadri Salman Qadri 《Computers, Materials & Continua》 SCIE EI 2024年第4期1497-1519,共23页
Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep lea... Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep learning-basedConvolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which usedas the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extractionand temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesionphotos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-TermMemory (LSTM) for temporal dependencies, the model achieves a high average recognition accuracy, surpassingprevious methods. The comprehensive evaluation, including accuracy, precision, recall, and F1-score, underscoresthe model’s competence in categorizing skin cancer types. This research contributes a sophisticated model andvaluable guidance for deep learning-based diagnostics, also this model excels in overcoming spatial and temporalcomplexities, offering a sophisticated solution for dermatological diagnostics research. 展开更多
关键词 Skin cancer classification deep learning Convolutional neural Network(CNN) rnn ResNet-50
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
16
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent neural Network(rnn) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
RNN循环神经网络的服务机器人交互手势辨识
17
作者 郑奕捷 李翠玉 郑祖芳 《机械设计与制造》 北大核心 2024年第4期282-285,共4页
服务机器人交互过程中机器人重要关节点难以确定,导致交互手势辨识难以增加,因此设计一种基于RNN循环神经网络的服务机器人交互手势辨识方法。利用Kinect捕获服务机器人交互手势深度图像,确定服务机器人交互过程中的重要关节点,提取服... 服务机器人交互过程中机器人重要关节点难以确定,导致交互手势辨识难以增加,因此设计一种基于RNN循环神经网络的服务机器人交互手势辨识方法。利用Kinect捕获服务机器人交互手势深度图像,确定服务机器人交互过程中的重要关节点,提取服务机器人交互手势特征。根据手势特征提取结果,定义手势模板,采用RNN循环神经网络对手势模板进行学习处理,搭建服务机器人交互手势辨识模型,得到相关的交互手势辨识结果。实验测试结果表明,采用所提方法可以快速获取高精度的服务机器人交互手势辨识结果,实际应用效果好。 展开更多
关键词 rnn循环神经网络 服务机器人 交互手势 辨识
下载PDF
基于多特征融合与双向RNN的细粒度意见分析 被引量:17
18
作者 郝志峰 黄浩 +1 位作者 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2018年第7期199-204,211,共7页
文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关... 文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关系。针对该问题,提出利用双向RNN构建基于序列标注的细粒度意见分析模型。通过融合文本的词向量、词性和依存关系等语言学特征,学习文本的修饰和语义信息,并设计一个时间序列标注模型,同时抽取属性实体判断文本的情感极性。在真实数据集上的实验结果表明,与CRF、TD-LSTM、AELSTM等模型相比,该模型情感分类效果提升明显。 展开更多
关键词 特征融合 词向量 循环神经网络 属性抽取 细粒度意见分析
下载PDF
基于BLSTM-RNN的船舶轨迹修复方法 被引量:5
19
作者 王贵槐 钟诚 +1 位作者 初秀民 张代勇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第10期7-12,67,共7页
针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性... 针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性分析及序列自相关系数,确定船舶轨迹点相关变量及轨迹序列自相关滞后值;在模型结构上,以ACC率为指标对模型超参数值进行合理设置,以长江干线航道武汉段及重庆段船舶轨迹数据为样本,对模型进行实证验证。实验结果表明:与线性及其他机器学习方法相比BLSTM-RNN方法在精度上有一定提升;在武汉段顺直河段实验中,将修复误差控制在15 m量级内,远低于其他非线性方法的50 m量级;在重庆复杂河段内,可将修复误差控制在10 m量级;模型解决了传统方法在长距离丢失点上精度缺失的问题,在20个连续点丢失的情况上,将修复误差降低至50m量级。 展开更多
关键词 船舶工程 双向长短时记忆网络(BLSTM) 循环神经网络(rnn) 船舶轨迹修复 船舶自动驾驶
下载PDF
River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1
20
作者 李致家 周轶 马振坤 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN.... Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 展开更多
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部