期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive multiblock kernel principal component analysis for monitoring complex industrial processes 被引量:1
1
作者 Ying-wei ZHANG Yong-dong TENG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第12期948-955,共8页
Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recur... Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables. 展开更多
关键词 recursive multiblock kernel principal component analysis (RMBPCA) Dynamic process Nonlinear process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部