The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected syst...The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized.展开更多
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr...Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t...This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,...Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.展开更多
This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transm...This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.展开更多
We prove that non-recursive base conversion can always be implemented by using a deterministic Markov process. Our paper discusses the pros and cons of recursive and non-recursive methods, in general. And we include a...We prove that non-recursive base conversion can always be implemented by using a deterministic Markov process. Our paper discusses the pros and cons of recursive and non-recursive methods, in general. And we include a comparison between non-recursion and a deterministic Markov process, proving that the Markov process is twice as efficient.展开更多
Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be o...Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.展开更多
According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied ...According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied to both the high and the low slip ratio conditions. Based on the simplified magic formula tire model the road longitudinal friction coefficient is preliminarily estimated by the recursive least squares method.The estimated friction coefficient and the tires model parameters are considered as extended states. The extended Kalman filter algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The Carsim simulation results show that the proposed method is better than the conventional algorithm. The road longitudinal friction coefficient can be quickly and accurately estimated under both the high and the low slip ratio conditions.The error is less than 0.1 and the response time is less than 2 s which meets the requirements of the vehicle longitudinal safety assistant system.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic i...In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.展开更多
A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model the estima...A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model the estimation of the OFDM time-frequency response is turned into the optimization of some time-invariant model parameters. A new algorithm based on the expectation-maximization (EM) method is proposed to obtain the maximum-likelihood (ML) estimation of the polynomial model parameters over the 2-D observed data. At the same time, in order to reduce the complexity and avoid the computation instability, a novel recursive approach (RPEMTO) is given to calculate the values of the parameters. It is further shown that this 2-D polynomial EM-based algorithm for time-varying OFDM (PEMTO) can be simplified mathematically to handle the one-dimensional sequential estimation. Simulations illustrate that the proposed algorithms achieve a lower bit error rate (BER) than other blind algorithms.展开更多
文摘The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized.
基金funded by the National Science and Technology Council,Taiwan(Grant No.NSTC 112-2121-M-039-001)by China Medical University(Grant No.CMU112-MF-79).
文摘Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
文摘This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金supported by the National Natural Science Foundation of China(61877067)the Foundation of Science and Technology on Near-Surface Detection Laboratory(TCGZ2019A002,TCGZ2021C003,6142414200511)the Natural Science Basic Research Program of Shaanxi(2021JZ-19)。
文摘Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.
文摘This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.
文摘We prove that non-recursive base conversion can always be implemented by using a deterministic Markov process. Our paper discusses the pros and cons of recursive and non-recursive methods, in general. And we include a comparison between non-recursion and a deterministic Markov process, proving that the Markov process is twice as efficient.
基金supported by the National Natural Science Foundation of China (Grant No. 40974073)the National 863 Program (Grant No.2007AA060504)the National 973 Program (Grant No. 2007CB209605) and CNPC Geophysical Laboratories
文摘Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D. Programs Foundation of Ministry of Education of China(No.200802861061)
文摘According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied to both the high and the low slip ratio conditions. Based on the simplified magic formula tire model the road longitudinal friction coefficient is preliminarily estimated by the recursive least squares method.The estimated friction coefficient and the tires model parameters are considered as extended states. The extended Kalman filter algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The Carsim simulation results show that the proposed method is better than the conventional algorithm. The road longitudinal friction coefficient can be quickly and accurately estimated under both the high and the low slip ratio conditions.The error is less than 0.1 and the response time is less than 2 s which meets the requirements of the vehicle longitudinal safety assistant system.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
基金The National Key Technology R& D Program of Chinaduring the 11th Five-Year Plan Period (No.2006BAJ18B03).
文摘In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.
基金The National Natural Science Foundation of China(No60472026)
文摘A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model the estimation of the OFDM time-frequency response is turned into the optimization of some time-invariant model parameters. A new algorithm based on the expectation-maximization (EM) method is proposed to obtain the maximum-likelihood (ML) estimation of the polynomial model parameters over the 2-D observed data. At the same time, in order to reduce the complexity and avoid the computation instability, a novel recursive approach (RPEMTO) is given to calculate the values of the parameters. It is further shown that this 2-D polynomial EM-based algorithm for time-varying OFDM (PEMTO) can be simplified mathematically to handle the one-dimensional sequential estimation. Simulations illustrate that the proposed algorithms achieve a lower bit error rate (BER) than other blind algorithms.