A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ...A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.展开更多
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ...The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.展开更多
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen...With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ...Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.展开更多
The feasibility of using different generations of recycled fine aggregate(RFA) in structural concrete in a chloride environment was evaluated by studying the performance of the RFA and the corresponding concrete. Th...The feasibility of using different generations of recycled fine aggregate(RFA) in structural concrete in a chloride environment was evaluated by studying the performance of the RFA and the corresponding concrete. The different generations of RFA were recycled by following the cycle of ‘concrete-waste concrete-fine aggregate-concrete'. The properties of three generations of repeatedly recycled fine aggregate(RRFA) were systematically investigated, and we focused on the compressive strength and splitting tensile strength and chloride ion permeability of the related structural concretes with 25%, 75%, and 100% replacement of natural fine aggregates with RFA. The results indicated that the quality of RRFA presents a trend of slow deterioration, but the overall performance of all RRFA still fulfils the quality requirements of recycled fine aggregate for structural concrete. All RRFA concretes achieved the target compressive strength of 40 MPa after 28 days except for the second generation of the recycled aggregate concrete and the third generation of the recycled aggregate concrete with 100% replacement, and all the concrete mixes achieved the target compressive strength after 90 days. The insights obtained in this study demonstrate the feasibility of using at least three generations of RRFA for the production of normal structural concrete with a design service life of 100 years in a chloride environment.展开更多
In order to expand the engineering application of recycle aggregate mortars (RAM) with aggregates from demolished concretes, the models for the properties of RAM and the replacement rate of these recycled fine aggre...In order to expand the engineering application of recycle aggregate mortars (RAM) with aggregates from demolished concretes, the models for the properties of RAM and the replacement rate of these recycled fine aggregates were proposed. First, different kinds of mathematical models for the basic properties (compressive strength, water retention rate, and consistency loss) of RAM with two kinds of admixtures, thickening powders (TP) and self-made powdery admixtures (SSCT) designed for RAM, and the replacement rates were established, while the average relative errors and relative standard errors of these models were calculated. Additionally, the models and their error analyses for the curves of drying shrinkage and curing time of RAM + SSCT at different replacement rates were put forward. The results show that polynomial functions should be used to calculate the basic properties of RAM + TP and RAM + SSCT at different replacement rates. In addition, polynonfial functions are the most optimal models for the sharp shrinkage sections in the curves of drying shrinkage-curing time of RAM + SSCT, while exponential functions should be used as the models for the slow shrinkage sections and steady shrinkage sections.展开更多
Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive...Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete(RCC) were investigated. In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties development. When the RCCS replacement rate is not less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was completely used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio was 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone(ITZ) and increase the compaction degree of cement paste. Furthermore, an expression of the compressive strength of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9% to 47.6% of the total weight of aggregate in producing concrete.展开更多
The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength r...The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.展开更多
The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FR...The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs.展开更多
Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction wa...Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.展开更多
The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concrete...The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.展开更多
The results of an experimental study on investigating the properties of cementitious rendering mortars prepared with a recycled fine aggregate(RA) were presented.The RA was obtained from a recycling plant in which m...The results of an experimental study on investigating the properties of cementitious rendering mortars prepared with a recycled fine aggregate(RA) were presented.The RA was obtained from a recycling plant in which mixed demolition wastes were processed by mechanical crushing,sieving and sorting operations.Two series of rendering mortar mixes were prepared with a constant water/cement and a constant aggregate/cement ratios of 0.55 and 3 respectively.River sand and natural crushed rock fine were originally used in the two series separately,and they were consistently replaced by 25%,50%,75% and 100% by the recycled aggregate.The experimental results showed that mechanical properties,such as compressive strength,flexural strength and modulus of elasticity of the mortars prepared with the RA were lower than the mortars made with the natural aggregates.Nevertheless,the bond strength at the interface between the mortar and masonry bricks determined by the Triplet test was found to be higher for the mortars prepared with the RA.展开更多
To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differ...To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.展开更多
The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents ...The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents were studied.Before and after CO_(2) curing,the physical properties in terms of the apparent density,water absorption and crushing value of RCA were tested and the quality of RCA was determined.Besides,scanning electron microscope was used to observe the microstructure of RCA.Results show that the physical properties variation of RCA with higher AM content are more significant,and the quality of RCA with lower AM content is easier to be upgraded during CO_(2) curing.The physical properties of RCA with 40.8% AM content are earlier stable than that with no less than 44.5% AM content during CO_(2) curing.The optimal temperature and relative humidity are 50 ℃ and 55% for CO_(2) curing,respectively.CO_(2) curing is incapable of upgrading the quality of RCA with AM no less than 50.6%.The quality of RCA with 44.5% AM content can be upgraded only under the optimum CO_(2) curing conditions.Under relative humidity higher than 40% and the CO_(2) curing time more than 12 h,CO_(2) curing upgrades the quality of RCA with 40.8% AM content.展开更多
In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardeni...In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardening controlled low strength material, which utilizes both rapid hardening sulphoaluminate cement and recycled fine aggregate from urban red brick construction waste. Totally, sixteen mixtures were prepared for the experiment with different cement-to-sand ratios and water-to-solid ratios. The flowability and bleeding rate of fresh mixture were measured to evaluate its workability, and the compressive strength of hardened mixture was tested to evaluate its rapid hardening and mechanical properties. Test results indicate that rapid hardening controlled low strength material containing recycled fine aggregate from urban red brick construction waste can achieve the desirable flowability, but the bleeding rate increases with the increase of flowability. In addition, 2-hour compressive strength can reach 0.08 - 0.12 MPa, and 4-hour compressive strength is 0.32 - 1.54 MPa, which can meet the requirements of emergency backfill construction. At last, based on the derived compressive strength, a fitting model for predicting compressive strength evolution of this new rapid hardening backfill material is developed, which fits accurately with these experimental data.展开更多
The main purpose of this research is to study the properties of re-use different types of construction materials such as PVC (polyvinylchloride) scraps, clay brick and recycled concrete as a partial replacement of c...The main purpose of this research is to study the properties of re-use different types of construction materials such as PVC (polyvinylchloride) scraps, clay brick and recycled concrete as a partial replacement of coarse aggregate. Different proportions (1%, 3%, 5% and 7%) by weight were used for PVC. scrap, (10%, 20%, 30%, and 40%) by weight were used for recycled concrete and (5%, 10%, 15%, and 20%) by weight were used for clay brick. Mechanical tests such as compressive and tensile strength tests and physical tests such as ultrasonic pulse velocity, bulk density, porosity, specific gravity and water absorption tests were done to the samples after curing in normal water for 28 days. Test results showed slightly degradation in mechanical and physical engineering properties of concrete specimens that used partial replacement of recycled concrete coarse aggregate, degradation increased with increasing of replacement but test results still closely to reference samples. Use of polyvinyl chloride in proportions not more than 5% as a partial replacement of coarse aggregates given acceptable results in comparison with reference samples but all test results degraded at 7% replacements. Test results of partial replacement of crushed brick coarse aggregates unacceptable and the range of degradation are wide because of increased (water: cement) ratio to improve the concrete workability.展开更多
In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load....In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.The effects of RCA replacement ratio(rg)and SF volume fraction(Vf)on the punching shear performance of SFRCAC two-way slabs were investigated.Digital Image Correlation(DIC)measurement and Acoustic Emission(AE)technique were introduced to collect pictures and relevant data during the punching shear test.The test results show that the SFRCAC two-way slab mainly exhibits punching shear failure and flexure failure under local concentric load.The punching shear failure space area of SFRCAC two-way slab has no obvious change with increasing rg,however,show a gradual increase trend with increasing Vf.Both of the punching shear ultimate bearing capacity(Pu)and its deflection of SFRCAC two-way slab decrease with increasing rg and increase with increasing Vf,respectively.Finally,through the regression analysis of the results from this study and the data collected from related literature,the influence of rg and Vf on the Pu of two-way slabs were obtained,and the equations in GB 50010-2010,ACI 318-19,and Eurocode 2 Codes were amended,respectively.Furthermore,the amended equations were all applicable to predicted the ultimate bearing capacity of the ordinary concrete two-way slab,RCAC two-way slab,SFRC two-way slab,and SFRCAC two-way slab.展开更多
Compared with strengthening the recycled fine aggregate(RFA)from construction and demolition waste,which is time-consuming and complex,adding admixture into the mixtures directly is more efficient and effective to exp...Compared with strengthening the recycled fine aggregate(RFA)from construction and demolition waste,which is time-consuming and complex,adding admixture into the mixtures directly is more efficient and effective to expand the application of recycled aggregate mortar(RAM).The admixture(named as SSC),mixed with sodium hexametaphosphate,sodium ligninsulfonate and citric acid,was directly added into the RAM.First,the compositions and physical properties of the RFA and reference aggregate were studied,respectively.The properties of fresh and hardened mortars were then investigated.The results show that there is a clear difference between the RFA and reference aggregate,and the properties of RAM without SSC are not as good as those of normal mortar.However,the consistency value,water retention rate,compressive strength and setting time values of RAM increase by 5%,7%,66%and 67%,and its consistency loss and density values decrease by 42%and 4%after the SSC is added into the RAM.Therefore,improving the properties of RAM through adding admixture is an effective and efficient approach to expanding its application.展开更多
基金Funded by the National Natural Science Foundation of China(No.U1904188)。
文摘A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金financially sponsored by Qing Lan Project in Jiangsu Province of China(2023)Scientific Research Project of Taizhou Polytechnic College(TZYKY-22-4).
文摘The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.
基金This research was funded by the National Natural Science Foundation of China(52078068)Practice Innovation Program of Jiangsu Province(KYCX22_3082).
文摘With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金supported by the Key R&D Projects in Yunnan Province under Grant Number 202203AC100004Additional funding was provided by the Major Science and Technology Project of the Ministry of Water Resources under Grant Number SKS-2022057.
文摘Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.
基金Funded by the National Natural Science Foundation of China(No.51278073)State Key Laboratoryfor GeoMechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘The feasibility of using different generations of recycled fine aggregate(RFA) in structural concrete in a chloride environment was evaluated by studying the performance of the RFA and the corresponding concrete. The different generations of RFA were recycled by following the cycle of ‘concrete-waste concrete-fine aggregate-concrete'. The properties of three generations of repeatedly recycled fine aggregate(RRFA) were systematically investigated, and we focused on the compressive strength and splitting tensile strength and chloride ion permeability of the related structural concretes with 25%, 75%, and 100% replacement of natural fine aggregates with RFA. The results indicated that the quality of RRFA presents a trend of slow deterioration, but the overall performance of all RRFA still fulfils the quality requirements of recycled fine aggregate for structural concrete. All RRFA concretes achieved the target compressive strength of 40 MPa after 28 days except for the second generation of the recycled aggregate concrete and the third generation of the recycled aggregate concrete with 100% replacement, and all the concrete mixes achieved the target compressive strength after 90 days. The insights obtained in this study demonstrate the feasibility of using at least three generations of RRFA for the production of normal structural concrete with a design service life of 100 years in a chloride environment.
基金The National Key Research and Development Program of China(No.2017YFC0703100)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0081)
文摘In order to expand the engineering application of recycle aggregate mortars (RAM) with aggregates from demolished concretes, the models for the properties of RAM and the replacement rate of these recycled fine aggregates were proposed. First, different kinds of mathematical models for the basic properties (compressive strength, water retention rate, and consistency loss) of RAM with two kinds of admixtures, thickening powders (TP) and self-made powdery admixtures (SSCT) designed for RAM, and the replacement rates were established, while the average relative errors and relative standard errors of these models were calculated. Additionally, the models and their error analyses for the curves of drying shrinkage and curing time of RAM + SSCT at different replacement rates were put forward. The results show that polynomial functions should be used to calculate the basic properties of RAM + TP and RAM + SSCT at different replacement rates. In addition, polynonfial functions are the most optimal models for the sharp shrinkage sections in the curves of drying shrinkage-curing time of RAM + SSCT, while exponential functions should be used as the models for the slow shrinkage sections and steady shrinkage sections.
基金Funded by the National Natural Science Foundation of China(No.50902107)the Fundamental Research Funds for the Central Universities(No.2013-YB-25)
文摘Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete(RCC) were investigated. In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties development. When the RCCS replacement rate is not less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was completely used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio was 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone(ITZ) and increase the compaction degree of cement paste. Furthermore, an expression of the compressive strength of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9% to 47.6% of the total weight of aggregate in producing concrete.
基金Supported by the National Mega-Project of Key Technology R&D Program in the 11th Five-Year Plan of China (No.2006BAJ04A04)the Education Department of Liaoning Province, China (No. 2008282)
文摘The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.
基金The National Key Research and Development Programm of China(No.2018YFD1100402-05)the National Natural Science Foundation of China(No.6505000184)
文摘The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs.
基金The National Science and Technology Support Program of China(No.2014BAC07B03)the Science and Technology Project of Transportation Committee of Beijing Government(No.2016-LZJKJ-01-006)the National Natural Science Foundation of China(No.51278016)
文摘Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(Nos.BY2013024-17,BY2014037-30,and BY2015027-23)
文摘The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.
文摘The results of an experimental study on investigating the properties of cementitious rendering mortars prepared with a recycled fine aggregate(RA) were presented.The RA was obtained from a recycling plant in which mixed demolition wastes were processed by mechanical crushing,sieving and sorting operations.Two series of rendering mortar mixes were prepared with a constant water/cement and a constant aggregate/cement ratios of 0.55 and 3 respectively.River sand and natural crushed rock fine were originally used in the two series separately,and they were consistently replaced by 25%,50%,75% and 100% by the recycled aggregate.The experimental results showed that mechanical properties,such as compressive strength,flexural strength and modulus of elasticity of the mortars prepared with the RA were lower than the mortars made with the natural aggregates.Nevertheless,the bond strength at the interface between the mortar and masonry bricks determined by the Triplet test was found to be higher for the mortars prepared with the RA.
基金This work was funded by the National Natural Science Foundation(NSFC)of PR China(Nos.51778463,51438007,52078370).
文摘To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.
基金Funded by the National Natural Science Foundation of China (Nos. 52078068, 52108190)Changzhou Science and Technology Project (No. CJ20200079)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. KYCX21_2846)。
文摘The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents were studied.Before and after CO_(2) curing,the physical properties in terms of the apparent density,water absorption and crushing value of RCA were tested and the quality of RCA was determined.Besides,scanning electron microscope was used to observe the microstructure of RCA.Results show that the physical properties variation of RCA with higher AM content are more significant,and the quality of RCA with lower AM content is easier to be upgraded during CO_(2) curing.The physical properties of RCA with 40.8% AM content are earlier stable than that with no less than 44.5% AM content during CO_(2) curing.The optimal temperature and relative humidity are 50 ℃ and 55% for CO_(2) curing,respectively.CO_(2) curing is incapable of upgrading the quality of RCA with AM no less than 50.6%.The quality of RCA with 44.5% AM content can be upgraded only under the optimum CO_(2) curing conditions.Under relative humidity higher than 40% and the CO_(2) curing time more than 12 h,CO_(2) curing upgrades the quality of RCA with 40.8% AM content.
文摘In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardening controlled low strength material, which utilizes both rapid hardening sulphoaluminate cement and recycled fine aggregate from urban red brick construction waste. Totally, sixteen mixtures were prepared for the experiment with different cement-to-sand ratios and water-to-solid ratios. The flowability and bleeding rate of fresh mixture were measured to evaluate its workability, and the compressive strength of hardened mixture was tested to evaluate its rapid hardening and mechanical properties. Test results indicate that rapid hardening controlled low strength material containing recycled fine aggregate from urban red brick construction waste can achieve the desirable flowability, but the bleeding rate increases with the increase of flowability. In addition, 2-hour compressive strength can reach 0.08 - 0.12 MPa, and 4-hour compressive strength is 0.32 - 1.54 MPa, which can meet the requirements of emergency backfill construction. At last, based on the derived compressive strength, a fitting model for predicting compressive strength evolution of this new rapid hardening backfill material is developed, which fits accurately with these experimental data.
文摘The main purpose of this research is to study the properties of re-use different types of construction materials such as PVC (polyvinylchloride) scraps, clay brick and recycled concrete as a partial replacement of coarse aggregate. Different proportions (1%, 3%, 5% and 7%) by weight were used for PVC. scrap, (10%, 20%, 30%, and 40%) by weight were used for recycled concrete and (5%, 10%, 15%, and 20%) by weight were used for clay brick. Mechanical tests such as compressive and tensile strength tests and physical tests such as ultrasonic pulse velocity, bulk density, porosity, specific gravity and water absorption tests were done to the samples after curing in normal water for 28 days. Test results showed slightly degradation in mechanical and physical engineering properties of concrete specimens that used partial replacement of recycled concrete coarse aggregate, degradation increased with increasing of replacement but test results still closely to reference samples. Use of polyvinyl chloride in proportions not more than 5% as a partial replacement of coarse aggregates given acceptable results in comparison with reference samples but all test results degraded at 7% replacements. Test results of partial replacement of crushed brick coarse aggregates unacceptable and the range of degradation are wide because of increased (water: cement) ratio to improve the concrete workability.
基金the financial support of National Natural Science Foundation of China(Grant No.51978629)。
文摘In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.The effects of RCA replacement ratio(rg)and SF volume fraction(Vf)on the punching shear performance of SFRCAC two-way slabs were investigated.Digital Image Correlation(DIC)measurement and Acoustic Emission(AE)technique were introduced to collect pictures and relevant data during the punching shear test.The test results show that the SFRCAC two-way slab mainly exhibits punching shear failure and flexure failure under local concentric load.The punching shear failure space area of SFRCAC two-way slab has no obvious change with increasing rg,however,show a gradual increase trend with increasing Vf.Both of the punching shear ultimate bearing capacity(Pu)and its deflection of SFRCAC two-way slab decrease with increasing rg and increase with increasing Vf,respectively.Finally,through the regression analysis of the results from this study and the data collected from related literature,the influence of rg and Vf on the Pu of two-way slabs were obtained,and the equations in GB 50010-2010,ACI 318-19,and Eurocode 2 Codes were amended,respectively.Furthermore,the amended equations were all applicable to predicted the ultimate bearing capacity of the ordinary concrete two-way slab,RCAC two-way slab,SFRC two-way slab,and SFRCAC two-way slab.
基金The Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX18_0081)the Fundamental Research Funds for the Central Universities,the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1918)the National Key Research and Development Program of China(No.2017YFC0703100)。
文摘Compared with strengthening the recycled fine aggregate(RFA)from construction and demolition waste,which is time-consuming and complex,adding admixture into the mixtures directly is more efficient and effective to expand the application of recycled aggregate mortar(RAM).The admixture(named as SSC),mixed with sodium hexametaphosphate,sodium ligninsulfonate and citric acid,was directly added into the RAM.First,the compositions and physical properties of the RFA and reference aggregate were studied,respectively.The properties of fresh and hardened mortars were then investigated.The results show that there is a clear difference between the RFA and reference aggregate,and the properties of RAM without SSC are not as good as those of normal mortar.However,the consistency value,water retention rate,compressive strength and setting time values of RAM increase by 5%,7%,66%and 67%,and its consistency loss and density values decrease by 42%and 4%after the SSC is added into the RAM.Therefore,improving the properties of RAM through adding admixture is an effective and efficient approach to expanding its application.