A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe effic...A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement.展开更多
Comprehensive Summary Metal nanoparticles(NPs)decorated block copolymer(BCP)hybrid nanoparticles have attracted enormous attention for their actual value in catalysis,medical therapy,and bioengineering.The confined as...Comprehensive Summary Metal nanoparticles(NPs)decorated block copolymer(BCP)hybrid nanoparticles have attracted enormous attention for their actual value in catalysis,medical therapy,and bioengineering.The confined assembly of BCPs within evaporative emulsion droplet is verified as an effective method to provide polymeric scaffolds to load metal NPs.However,to date,it remains challenging to generate different types of metal NPs decorated BCP hybrid nanoparticles.Herein,we employed the emulsion confined self-assembly of poly(styrene-b-2-vinylpyridine)(PS-b-P2VP)and the followed seed-mediated growth of Au and palladium(Pd)NPs onto well-defined BCP particles to design a series of Au/Pd decorated BCP hybrid nanoparticles,which exhibited excellent catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol with the reductant of NaBH4.This work may inspire more researchers to investigate the selective decoration of different metal NPs onto the polymeric scaffolds,broadening the potential applications of the inorganic/organic hybrid nanoparticles.展开更多
The emerging chemical recyclable polymers,such as poly(γ-butyrolactone)(PGBL)and poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),provide a good solution to the plastic pollution.However,these homopolymers s...The emerging chemical recyclable polymers,such as poly(γ-butyrolactone)(PGBL)and poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),provide a good solution to the plastic pollution.However,these homopolymers suffer from limited structures and properties.Herein,we reported a fully chemical recyclable copolymer P(GBL-co-((R)-M))through ring-opening copolymerization(ROCOP)of GBL and(R)-M.By employing organomagnesium as the catalyst and regulating the reaction conditions,the chemical structures of copolymers were wellcontrolled(GBL content=13%-78%,Mn=6560-15600 g/mol,DM=1.08-1.59).The resultant P(GBL-co-((R)-M))exhibited fully chemical recyclability,which rapidly and quantitatively depolymerized into initial GBL and(R)-M monomer through chemolysis.By varying GBL content,tunable thermal properties were achieved for P(GBL-co-((R)-M)).The onset decomposition temperatures of copolymers varied from 193°C to 234°C.A linear evolution of glass transition temperature(T_(g))of P(GBL-co-((R)-M))versus GBL content was obtained as following equation of Tg=-1.06×GBL mol%×100+39.6.We hope that the reported fully chemical recyclable copolymers with tunable structures and properties would serve as the candidate material for sustainable applications.展开更多
基金This research was funded by the Ministry of Science and Technology of Taiwan,Grant No.MOST 109-2634-F-027-001.
文摘A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement.
基金the financial support of the Natural Science Foundation of China(52003070)Zhejiang Provincial Natural Science Foundation of China(LR20E030003).
文摘Comprehensive Summary Metal nanoparticles(NPs)decorated block copolymer(BCP)hybrid nanoparticles have attracted enormous attention for their actual value in catalysis,medical therapy,and bioengineering.The confined assembly of BCPs within evaporative emulsion droplet is verified as an effective method to provide polymeric scaffolds to load metal NPs.However,to date,it remains challenging to generate different types of metal NPs decorated BCP hybrid nanoparticles.Herein,we employed the emulsion confined self-assembly of poly(styrene-b-2-vinylpyridine)(PS-b-P2VP)and the followed seed-mediated growth of Au and palladium(Pd)NPs onto well-defined BCP particles to design a series of Au/Pd decorated BCP hybrid nanoparticles,which exhibited excellent catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol with the reductant of NaBH4.This work may inspire more researchers to investigate the selective decoration of different metal NPs onto the polymeric scaffolds,broadening the potential applications of the inorganic/organic hybrid nanoparticles.
基金financially supported by the National Natural Science Foundation of China(Nos.22078150 and 21504039)。
文摘The emerging chemical recyclable polymers,such as poly(γ-butyrolactone)(PGBL)and poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),provide a good solution to the plastic pollution.However,these homopolymers suffer from limited structures and properties.Herein,we reported a fully chemical recyclable copolymer P(GBL-co-((R)-M))through ring-opening copolymerization(ROCOP)of GBL and(R)-M.By employing organomagnesium as the catalyst and regulating the reaction conditions,the chemical structures of copolymers were wellcontrolled(GBL content=13%-78%,Mn=6560-15600 g/mol,DM=1.08-1.59).The resultant P(GBL-co-((R)-M))exhibited fully chemical recyclability,which rapidly and quantitatively depolymerized into initial GBL and(R)-M monomer through chemolysis.By varying GBL content,tunable thermal properties were achieved for P(GBL-co-((R)-M)).The onset decomposition temperatures of copolymers varied from 193°C to 234°C.A linear evolution of glass transition temperature(T_(g))of P(GBL-co-((R)-M))versus GBL content was obtained as following equation of Tg=-1.06×GBL mol%×100+39.6.We hope that the reported fully chemical recyclable copolymers with tunable structures and properties would serve as the candidate material for sustainable applications.