In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque...In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.展开更多
To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differ...To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.展开更多
During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this m...During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.展开更多
The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr...The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.展开更多
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force ...Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g.展开更多
The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The c...The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The chloride diffusion coefficients of recycled aggregate concrete under compressive stresses were measured by the rapid chloride ion migration(RCM)method.The experimental results show that the chloride diffusion coefficients of recycled aggregate concrete(RAC)under different compressive stress ratios generally decrease with the increase of curing age.For RAC subjected to the same compressive stress ratios,the chloride diffusion coefficients approximately have power functions with curing ages and the relationship models are proposed.Moreover,the influence of curing age on chloride diffusion coefficient firstly decreases and then increases as the compressive stress ratio increases.展开更多
A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the eff...A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).展开更多
This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete(RAC)beams reinforced with glass fiber-reinforced polymer(GFRP)bars.A total of twelve beams were built and tested u...This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete(RAC)beams reinforced with glass fiber-reinforced polymer(GFRP)bars.A total of twelve beams were built and tested up to failure under four-point bending.The main parameters were reinforcement ratio(0.38%,0.60%,and 1.17%),recycled aggregate replacement ratio(R=0,50%,and 100%)and longitudinal reinforcement types(GFRP and steel).The flexural capacity,failure modes,flexibility deformation,reinforcement strains and crack distribution of the tested beams were investigated and compared with the calculation models of American code ACI 440.1-R-15,Canadian code CSA S806-12 and ISIS-M03-07.The tested results indicated that the reinforcement ratio has great influence on the ultimate load,crack width and deflection of GFRP-RAC beams,the recycled aggregate replacement ratio has little influence on it.However,it was found that the reinforcement ratio has no obvious influence on the cracking load which was only related to the recycled aggregate replacement ratio.The average cracking load decreased by 5%and 15%as the recycled aggregate replacement ratio increased from 0 to 50%and 100%.For the steel-RAC beams,the ultimate load was found to be about 1/2 of the ultimate load of GFRP-RAC beam under the same condition and the trend of strain,deflection and crack width were different from GFRP-RAC beams.This is due to the different material properties of GFRP bars and steel rebar.On the other hand,the calculation results showed that ACI 440.1-R-15 and CSA S806-12 underestimated the ultimate load of GFRP-RAC beams.Moreover,the deflection prediction of GFRP-RAC beams by CSA S806-12 is relatively accurate compared with ACI 440.1-R-15 and ISIS-M03-07.As for the prediction of crack width,the results of ACI 440.1-R-15 prediction were in good agreement with the experimental results at the ultimate load,with the average value of 1.09±0.28.展开更多
The purpose of this study is to reveal the service performance of recycled aggregate concrete(RAC)components for different values of water-cement ratio and replacement rate of recycled coarse aggregate(RCA).Generally,...The purpose of this study is to reveal the service performance of recycled aggregate concrete(RAC)components for different values of water-cement ratio and replacement rate of recycled coarse aggregate(RCA).Generally,the concrete strength decreases with the increase of the replacement rate of RCA,in order to meet the strength requirements when changing the replacement rate of RCA,it is necessary to change the water-cement ratio at the same time.Therefore,the axial compressive strengths of prism with 25 mix proportions,the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water-cement ratio and RCA replacement rate.The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation(DIC)method,and a self-made gravity loading experimental device was used for long-term deformation investigation.Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete(NAC),but the brittleness was more pronounced.The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water-cement ratio.The water-cement ratio has an evident influence on the axial compressive strength and early creep of concrete,while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.展开更多
Regenerate utilization of worn cement concrete is the key technical problem to be solved in traffic field while the cement concrete pavement built long ago durative disrepair. The study aimed at the worn cement concre...Regenerate utilization of worn cement concrete is the key technical problem to be solved in traffic field while the cement concrete pavement built long ago durative disrepair. The study aimed at the worn cement concrete which can not be reused in site,get recycled aggregate according to the practically technics of regenerate,and then carry out test study on the aggregate and recycle aggregate cement concrete. Test results show recycled fine aggregate is about 26% of recycled aggregate,and substantive sand pulps are adhere on the surface of recycled while the distinct crackle appears on this sand pulp surface. relative to the natural aggregate,one of the remarkable characters of the recycled aggregate is that the inartificial water ratio is relatively low and the water-absorbing ratio can reach 4%~12%,and the water-absorbing ratio increased while the grain getting fine. the second remarkable characters of recycled coarse aggregate is that the weared stone value and crushed stone value of recycled coarse aggregate are both bigger,the Los-angeles weared stone value is 32.7,the crushed stone value is 26.5. So,the recycled aggregate can not meet the criterion,but after mixed into 40% natural aggregate,it can meet. The mixture ratio test results proved that based on the dosage of cement we can through reduce water cement ratio and augment water quantity to improve the working performance of recycled concrete. The destroy form of recycled concrete goes all the way with natural concrete,the recycled aggregate can absolutely used in cement concrete under C50.展开更多
Numerous experimental and theoretical studies on recycled aggregate concrete have been carried out in China in the past 10 years.This paper provides a comprehensive review of the related findings of research on the me...Numerous experimental and theoretical studies on recycled aggregate concrete have been carried out in China in the past 10 years.This paper provides a comprehensive review of the related findings of research on the mechanical properties of RAC in China.The influences of the RCA on the strength and deformation characteristics of concrete,the statistical characteristics for the strength of RAC,fracture energy,stress-strain relationships under uniaxial compression,uniaxial tension as well as pure shear,and the residual strength of RAC after exposure to high temperatures,the bond between RAC and different kinds of steel rebar were also reviewed.Furthermore,some recent studies on the numerical simulation of the failure mechanism for RAC at the meso-structure level were discussed.展开更多
This study tries to reveal the carbonation behavior when recycled coarse aggregates(RCAs) are used to mix new concrete.Six series of tests including 22 groups of recycled aggregate concrete(RAC) specimens were carried...This study tries to reveal the carbonation behavior when recycled coarse aggregates(RCAs) are used to mix new concrete.Six series of tests including 22 groups of recycled aggregate concrete(RAC) specimens were carried out,in which the effects of the water/binder(w/b) ratios,the binder content,the types of mineral admixture,the quality of RCAs,the RCAs replacement and the loading levels on the carbonation behavior of RAC were evaluated,respectively.The results showed that the carbonation behavior of RAC was not only influenced by the quality of new mortar but also by the properties of RCAs.The admixture of mineral admixture influenced the carbonation,and the loading stress level might have a significant impact on the evolution of the carbonation.展开更多
This paper presents a review of the studies on the structural performance of recycled aggregate concrete(RAC) elements and structures in the past 10 years in China.The flexural and shear behaviour of RAC beams,the com...This paper presents a review of the studies on the structural performance of recycled aggregate concrete(RAC) elements and structures in the past 10 years in China.The flexural and shear behaviour of RAC beams,the compression performance of RAC columns as well as the flexural performance of RAC slabs are overviewed and summarized.The seismic responses of beam-column joints,shear walls as well as frames made of RAC are also covered.The experimental observations indicate that the structural performance of RAC elements and structures is somewhat similar to that of natural aggregate concrete(NAC) members.A brief introduction to the application of RAC in sustainable buildings in China is also presented.展开更多
Recycled aggregate concrete (RAC) specimens with different recycled zoarse aggregate replacement ratios by mass (R) are fully immersed in a 10% chloride solution for 235 days. Both free chloride concentration (CI...Recycled aggregate concrete (RAC) specimens with different recycled zoarse aggregate replacement ratios by mass (R) are fully immersed in a 10% chloride solution for 235 days. Both free chloride concentration (CI) and total chloride concentration (Ct) are then measured employing a rapid chloride test (RCT) system. The Fick's second diffusion law is verified by the test data and used to predict chloride concentration distribution at different immersion periods. Addilionally, pore structures of the new and old mortar in RAC are tested by mercury intrusion porosimetrV (MIP). It is found that bind- ing chloride concentration (Cb) linearly increases with Cf. In natural aggregate concrete (NAC), Cf is obviously smaller than that in the RAC in the same testing environment and this is different from the test results of Ct and Cb. Furthermore, the effects of R on the chloride concentration of RAC become severe for specimens subjected to long immersion periods, which can be explained in terms of the pore structures of the new mortar and old adhesive mortar in RAC.展开更多
Large quantities of construction and demolition(C&D)building waste are being generated as a result of rapid urbanization and natural disasters in China.An increasing awareness of environmental protection is escala...Large quantities of construction and demolition(C&D)building waste are being generated as a result of rapid urbanization and natural disasters in China.An increasing awareness of environmental protection is escalating C&D waste disposal concerns.This paper presents a brief introduction to current shaking table test research in China on structures built with recycled aggregate concrete(RAC).Test structures include a cast-in situ frame model,a precast frame model and a block masonry building.The test results prove that it is feasible to use RAC as a structural material in seismic areas,with recommended modifications and proper design,especially in low-rise structures.This paper also presents several successful applications of RAC in civil and structural engineering projects in China,which will serve to promote RAC as a global ecological structural material.展开更多
As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)co...As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.展开更多
基金the financial support from the Distinguished Young Scholars of China by the National Natural Science Foundation of China(51325802)the National Natural Science Foundation of China(51178340,52078358,and 52008304)。
文摘In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.
基金This work was funded by the National Natural Science Foundation(NSFC)of PR China(Nos.51778463,51438007,52078370).
文摘To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.
文摘During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.
基金National Natural Science Foundation of China under Grant No.11472084Science and Technology Project of Guangdong Province under Grant No.2017B020238006+1 种基金Science and Technology Planning Project of Guangzhou City under Grant No.201704030057Fundamental Research Funds for the Central Universities under Grant No.21619327
文摘The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.
基金the Key Projects of the China National Science & Technology Pillar Programunder Grant No.2008BAK48B03,the National Natural Science Foundation of China under Grant No.51178340
文摘Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g.
基金supported by the Fundamental Research Funds for the Central UniversitiesFoundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20150105)the National Natural Science Foundation of China (No. 51279074)
文摘The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The chloride diffusion coefficients of recycled aggregate concrete under compressive stresses were measured by the rapid chloride ion migration(RCM)method.The experimental results show that the chloride diffusion coefficients of recycled aggregate concrete(RAC)under different compressive stress ratios generally decrease with the increase of curing age.For RAC subjected to the same compressive stress ratios,the chloride diffusion coefficients approximately have power functions with curing ages and the relationship models are proposed.Moreover,the influence of curing age on chloride diffusion coefficient firstly decreases and then increases as the compressive stress ratio increases.
基金the National Natural Science Foundation of China under Grant Nos.51408346 and 51438007the Shanghai Science and Technique Committee under Grant No.14231201300
文摘A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(51704029)Liaoning Revitalization Talents Program(XLYC1807044,XLYC1807050).
文摘This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete(RAC)beams reinforced with glass fiber-reinforced polymer(GFRP)bars.A total of twelve beams were built and tested up to failure under four-point bending.The main parameters were reinforcement ratio(0.38%,0.60%,and 1.17%),recycled aggregate replacement ratio(R=0,50%,and 100%)and longitudinal reinforcement types(GFRP and steel).The flexural capacity,failure modes,flexibility deformation,reinforcement strains and crack distribution of the tested beams were investigated and compared with the calculation models of American code ACI 440.1-R-15,Canadian code CSA S806-12 and ISIS-M03-07.The tested results indicated that the reinforcement ratio has great influence on the ultimate load,crack width and deflection of GFRP-RAC beams,the recycled aggregate replacement ratio has little influence on it.However,it was found that the reinforcement ratio has no obvious influence on the cracking load which was only related to the recycled aggregate replacement ratio.The average cracking load decreased by 5%and 15%as the recycled aggregate replacement ratio increased from 0 to 50%and 100%.For the steel-RAC beams,the ultimate load was found to be about 1/2 of the ultimate load of GFRP-RAC beam under the same condition and the trend of strain,deflection and crack width were different from GFRP-RAC beams.This is due to the different material properties of GFRP bars and steel rebar.On the other hand,the calculation results showed that ACI 440.1-R-15 and CSA S806-12 underestimated the ultimate load of GFRP-RAC beams.Moreover,the deflection prediction of GFRP-RAC beams by CSA S806-12 is relatively accurate compared with ACI 440.1-R-15 and ISIS-M03-07.As for the prediction of crack width,the results of ACI 440.1-R-15 prediction were in good agreement with the experimental results at the ultimate load,with the average value of 1.09±0.28.
基金the National Natural Science Foundation of China(Grant Nos.52168015,51768005)Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281333).
文摘The purpose of this study is to reveal the service performance of recycled aggregate concrete(RAC)components for different values of water-cement ratio and replacement rate of recycled coarse aggregate(RCA).Generally,the concrete strength decreases with the increase of the replacement rate of RCA,in order to meet the strength requirements when changing the replacement rate of RCA,it is necessary to change the water-cement ratio at the same time.Therefore,the axial compressive strengths of prism with 25 mix proportions,the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water-cement ratio and RCA replacement rate.The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation(DIC)method,and a self-made gravity loading experimental device was used for long-term deformation investigation.Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete(NAC),but the brittleness was more pronounced.The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water-cement ratio.The water-cement ratio has an evident influence on the axial compressive strength and early creep of concrete,while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.
文摘Regenerate utilization of worn cement concrete is the key technical problem to be solved in traffic field while the cement concrete pavement built long ago durative disrepair. The study aimed at the worn cement concrete which can not be reused in site,get recycled aggregate according to the practically technics of regenerate,and then carry out test study on the aggregate and recycle aggregate cement concrete. Test results show recycled fine aggregate is about 26% of recycled aggregate,and substantive sand pulps are adhere on the surface of recycled while the distinct crackle appears on this sand pulp surface. relative to the natural aggregate,one of the remarkable characters of the recycled aggregate is that the inartificial water ratio is relatively low and the water-absorbing ratio can reach 4%~12%,and the water-absorbing ratio increased while the grain getting fine. the second remarkable characters of recycled coarse aggregate is that the weared stone value and crushed stone value of recycled coarse aggregate are both bigger,the Los-angeles weared stone value is 32.7,the crushed stone value is 26.5. So,the recycled aggregate can not meet the criterion,but after mixed into 40% natural aggregate,it can meet. The mixture ratio test results proved that based on the dosage of cement we can through reduce water cement ratio and augment water quantity to improve the working performance of recycled concrete. The destroy form of recycled concrete goes all the way with natural concrete,the recycled aggregate can absolutely used in cement concrete under C50.
基金supported by the National Natural Science Foundation of China (Grant No. 51178340)the Shanghai Science and Technology Committee (Grant No. 10231202000)the New Century Excellent Talentsin China Ministry of Education Project (Grant No. NCET-06-0383)
文摘Numerous experimental and theoretical studies on recycled aggregate concrete have been carried out in China in the past 10 years.This paper provides a comprehensive review of the related findings of research on the mechanical properties of RAC in China.The influences of the RCA on the strength and deformation characteristics of concrete,the statistical characteristics for the strength of RAC,fracture energy,stress-strain relationships under uniaxial compression,uniaxial tension as well as pure shear,and the residual strength of RAC after exposure to high temperatures,the bond between RAC and different kinds of steel rebar were also reviewed.Furthermore,some recent studies on the numerical simulation of the failure mechanism for RAC at the meso-structure level were discussed.
基金supported by the National Natural Science Foundation ofChina (Grant No. 51178340)the Shanghai Science and Technology Committee (Grant No. 10231202000)the New Century Excellent Talentsin China Ministry of Education Project (Grant No. NCET-06-0383)
文摘This study tries to reveal the carbonation behavior when recycled coarse aggregates(RCAs) are used to mix new concrete.Six series of tests including 22 groups of recycled aggregate concrete(RAC) specimens were carried out,in which the effects of the water/binder(w/b) ratios,the binder content,the types of mineral admixture,the quality of RCAs,the RCAs replacement and the loading levels on the carbonation behavior of RAC were evaluated,respectively.The results showed that the carbonation behavior of RAC was not only influenced by the quality of new mortar but also by the properties of RCAs.The admixture of mineral admixture influenced the carbonation,and the loading stress level might have a significant impact on the evolution of the carbonation.
基金supported by the Natural National Science Foundation of China (Grant No. 51178340)the Shanghai Science and Technology Committee (Grant No. 10231202000)the New Century Excellent Talents in China Ministry of Education Project (Grant No. NCET-06-0383)
文摘This paper presents a review of the studies on the structural performance of recycled aggregate concrete(RAC) elements and structures in the past 10 years in China.The flexural and shear behaviour of RAC beams,the compression performance of RAC columns as well as the flexural performance of RAC slabs are overviewed and summarized.The seismic responses of beam-column joints,shear walls as well as frames made of RAC are also covered.The experimental observations indicate that the structural performance of RAC elements and structures is somewhat similar to that of natural aggregate concrete(NAC) members.A brief introduction to the application of RAC in sustainable buildings in China is also presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.51325802,51250110074)
文摘Recycled aggregate concrete (RAC) specimens with different recycled zoarse aggregate replacement ratios by mass (R) are fully immersed in a 10% chloride solution for 235 days. Both free chloride concentration (CI) and total chloride concentration (Ct) are then measured employing a rapid chloride test (RCT) system. The Fick's second diffusion law is verified by the test data and used to predict chloride concentration distribution at different immersion periods. Addilionally, pore structures of the new and old mortar in RAC are tested by mercury intrusion porosimetrV (MIP). It is found that bind- ing chloride concentration (Cb) linearly increases with Cf. In natural aggregate concrete (NAC), Cf is obviously smaller than that in the RAC in the same testing environment and this is different from the test results of Ct and Cb. Furthermore, the effects of R on the chloride concentration of RAC become severe for specimens subjected to long immersion periods, which can be explained in terms of the pore structures of the new mortar and old adhesive mortar in RAC.
基金the financial support from the National Natural Science Foundation of China(Grant No.51178340)the Ministry of Education(No.NCET-06-0383).
文摘Large quantities of construction and demolition(C&D)building waste are being generated as a result of rapid urbanization and natural disasters in China.An increasing awareness of environmental protection is escalating C&D waste disposal concerns.This paper presents a brief introduction to current shaking table test research in China on structures built with recycled aggregate concrete(RAC).Test structures include a cast-in situ frame model,a precast frame model and a block masonry building.The test results prove that it is feasible to use RAC as a structural material in seismic areas,with recommended modifications and proper design,especially in low-rise structures.This paper also presents several successful applications of RAC in civil and structural engineering projects in China,which will serve to promote RAC as a global ecological structural material.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51578001,51608003,and 51878002)Natural Science Foundation granted by Department of Education,Anhui Province(No.KJ2015ZD10)+2 种基金Key Research and Development Plan of Anhui Province(No.1704a0802131)the Outstanding Young Talent Support Program of Anhui Province(No.gxyqZD2016072)This work was also supported by the Graduate Innovation Research Foundation granted by Anhui University of Technology(Nos.2016097,2016094).
文摘As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.