期刊文献+
共找到28,349篇文章
< 1 2 250 >
每页显示 20 50 100
Recycled graphite for more sustainable lithium-ion batteries
1
作者 Mayokun Olutogun Anna Vanderbruggen +5 位作者 Christoph Frey Martin Rudolph Dominic Bresser Stefano Passerini Helmholtz Institute Ulm(HIU) Ulm 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期15-24,共10页
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc... The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite. 展开更多
关键词 ANODE GRAPHITE lithium-ion battery recyclING SUSTAINABILITY
下载PDF
Long-term performance of recycled asphalt mixtures containing high RAP and RAS
2
作者 Jiangmiao Yu Zengyao Lin +3 位作者 Guilian Zou Huayang Yu Zhen Leng Yuan Zhang 《Journal of Road Engineering》 2024年第1期36-53,共18页
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ... The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS. 展开更多
关键词 recycled asphalt mixture recycling agents Long-term performance CRACKING
下载PDF
High-efficiency Carbonation Modification Methods of Recycled Coarse Aggregates
3
作者 张美香 YANG Xiaolin +3 位作者 丁亚红 SUN Bo ZHANG Xianggang LÜXiuwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期386-398,共13页
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo... To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate. 展开更多
关键词 recycled coarse aggregate pressurized carbonation high-efficiency carbonation NANO-SIO2 strengthening mechanism
下载PDF
Residual fluoride self-activated effect enabling upgraded utilization of recycled graphite anode
4
作者 Shuzhe Yang Qingqing Gao +7 位作者 Yukun Li Hongwei Cai Xiaodan Li Gaoxing Sun Shuxin Zhuang Yujin Tong Hao Luo Mi Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期24-31,I0002,共9页
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure... Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs. 展开更多
关键词 Spent lithium-ion batteries recycled graphite anode FLUORIDE Self-activated effect Upgraded utilization
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
5
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance MICROSTRUCTURE
下载PDF
Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar
6
作者 Yadong Bian Xuan Qiu +2 位作者 Jihui Zhao Zhong Li Jiana Ouyang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期45-58,共14页
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero... In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar. 展开更多
关键词 recycled concrete fine powder cement mortar CARBONIZATION SULFATE chloride ion DURABILITY
下载PDF
Mechanical Property and Microstructure of Cement Mortar with Carbonated Recycled Powder
7
作者 丁亚红 张美香 +3 位作者 YANG Xiaolin XU Ping SUN Bo GUO Shuqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期689-697,共9页
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon... Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect. 展开更多
关键词 recycled powder carbonation activation compound carbonation activity index mechanical property MICROSTRUCTURE
下载PDF
Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment
8
作者 Jie Huang Rongbin Jiang +1 位作者 Xiaobo Sun Yingyong Shuai 《Journal of Renewable Materials》 EI CAS 2024年第1期187-201,共15页
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ... The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential. 展开更多
关键词 Carbonation treatment REPAIR freeze-thaw cycles second-generation recycled fine aggregate
下载PDF
Bond-Slip Behavior of Steel Bar and Recycled Steel Fibre-Reinforced Concrete
9
作者 Ismail Shah Jing Li +4 位作者 Nauman Khan Hamad R.Almujibah Muhammad Mudassar Rehman Ali Raza Yun Peng 《Journal of Renewable Materials》 EI CAS 2024年第1期167-186,共20页
Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ... Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage. 展开更多
关键词 recycled coarse aggregates(RCA) steel fiber bonding performance BOND-SLIP environmental challenges
下载PDF
Promoting sustainable consumption and circular economy:the intention of Vietnamese youth consumers to purchase products made from recycled plastics
10
作者 Hong Thi Thu Nguyen 《Chinese Journal of Population,Resources and Environment》 2024年第2期194-203,共10页
Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leadin... Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leading to the production of various products made from recycled plastics(PRP).Nevertheless,a gap persists between consumption and demand for such products,which is primarily attributed to a lack of comprehension from the consumer perspective.Given the pivotal role consumers play in the adoption of these products,this study explores consumers’intentions to purchase PRP.This is particularly significant in Vietnam,which is an emerging economy aspiring to achieve the objectives of a circular economy and sustainable development.Utilizing an integrated cognitive-emotional framework comprising the Valence Theory and the Norm Activation Model,data from 564 Vietnamese students were gathered and analyzed using structural equation modeling.The results show that awareness of consequences is a major driver of consumer purchase intentions,followed by perceived ease of application and monetary incentives.The results also indicate that health concerns have the strongest effect on purchase intention and in the negative side,meaning that the health-related risk is the primary concern for consumers during the decision-making process.This research holds substantial value for academics and managers,as it aids in the theoretical exploration and the formulation of strategies to improve consumer acceptance of PRP. 展开更多
关键词 recycled plastics Purchase intention Sustainable consumption Circular economy Valence theory Norm activation model
下载PDF
Quantifying Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region,Southeastern Tibetan Plateau,China
11
作者 MA Yanwei PU Tao +2 位作者 SHI Xiaoyi MA Xinggang YU Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第4期764-776,共13页
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t... Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area. 展开更多
关键词 recycled moisture stable isotope PRECIPITATION d-excess Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model southeastern Tibetan Plateau China
下载PDF
Bird’s-eye view of recycled solid wastes in road engineering
12
作者 Zhuangzhuang Liu Tengteng Feng +5 位作者 Xingyi Zhu Jie Gao Kui Hu Meng Guo Fan Gu Feng Li 《Journal of Road Engineering》 2024年第2期93-150,共58页
Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wast... Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects. 展开更多
关键词 Road engineering Industrial solid waste Infrastructure solid waste Municipal life waste recycled materials
下载PDF
Three-Dimensional Multi-Phase Microscopic Simulation of Service Life of Recycled Large Aggregate Self-Compacting Concrete
13
作者 Jing Li Lina Gao +3 位作者 Libo Liu Liao Zhang Jianhua Zheng Jing Gao 《Journal of Materials Science and Chemical Engineering》 2024年第4期126-135,共10页
Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environmen... Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environment. A three-dimensional multi-phase mesoscopic numerical model of RLA-SCC was established to simulate the chloride ions transportation in concrete. Experiments of RLA-SCC immersing in chloride solution were carried out to verify the simulation results. The effects of recycled large aggregate (RLA) content and RLA particle size on the service life of concrete were explored. The results indicate that the mesoscopic numerical simulation results are in good agreement with the experimental results. At the same depth, the closer to the surface of the RLA, the greater the chloride ion concentration. The service life of RLA-SCC in marine environment decreases with the increase of RLA content. Compared with the service life of 20% content, the service life of 25% and 30% content decreased by 20% and 42% respectively. Increasing the particle size of RLA can effectively improve the service life of RLA-SCC in chloride environment. Compared with the service life of 50 mm particle size, the service life of 70 mm and 90 mm increased by 61% and 163%, respectively. . 展开更多
关键词 recycled Large Aggregate Self-Compacting Concrete Mesoscopic Mode Chloride Ion Diffusion Numerical Analysis
下载PDF
Research and Application of Recycled Concrete Technology in Prefabricated Buildings
14
作者 Shanshan DENG Gang SHI +3 位作者 Chao SHANG Fuchuan ZHOU Masabo Gasper Masiko M.Kaziana 《Research and Application of Materials Science》 2024年第1期33-36,共4页
The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodolo... The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodologies of preparation,applicable sectors,and evaluative metrics of recycled concrete technology,highlighting its prospective benefits.Nonetheless,for the successful integration of recycled concrete technology into prefabricated component applications,it is imperative to systematically enhance its physical,mechanical,and attributes,as well as its environmental efficacy.Moreover,to foster the continued advancement of recycled concrete technology,innovative initiatives,standardization,educational programs,demonstration projects,and collaborative efforts are crucial to promote broader adoption and realize improved outcomes within the realm of prefabricated components.In conclusion,recycled concrete technology is poised to play a pivotal role in prefabricated construction,offering robust support for propelling the construction industry towards a sustainable future. 展开更多
关键词 recycled concrete prefabricated buildings Environmental performance assessment
下载PDF
Experimental Study on Mechanical Properties of Self-Compacting Recycled Concrete
15
作者 Zhiqiao Zhong 《Journal of Architectural Research and Development》 2024年第4期24-31,共8页
The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strengt... The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%. 展开更多
关键词 Self-compacting recycled aggregate concrete Axial compression test Mechanical property Substitution rate
下载PDF
Effect of High Temperature Curing on the Frost Resistance of Recycled Aggregate Concrete and the Physical Properties of Second-Generation Recycled Coarse Aggregate under Freeze-Thaw Cycles 被引量:1
16
作者 Xintong Chen Pinghua Zhu +2 位作者 Xiancui Yan Lei Yang Huayu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2953-2967,共15页
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen... With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties. 展开更多
关键词 Freeze-thaw cycles curing condition recycled aggregate concrete second-generation recycled coarse aggregate
下载PDF
Fundamental Issues Towards Unified Design Theory of Recycled and Natural Aggregate Concrete Components 被引量:1
17
作者 Jianzhuang Xiao Kaijian Zhang +2 位作者 Tao Ding Qingtian Zhang Xuwen Xiao 《Engineering》 SCIE EI CAS CSCD 2023年第10期188-197,共10页
In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque... In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures. 展开更多
关键词 recycled aggregate concrete(RAC) Natural aggregate concrete(NAC) Strength determination Constitutive relation Reliability Unified design theory
下载PDF
Analysis of a landfill cover without geomembrane using varied particle sizes of recycled concrete
18
作者 Charles Wang Wai Ng Cheuk Lam Ng +4 位作者 Junjun Ni Haowen Guo Qi Zhang Qiang Xue Rui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1263-1273,共11页
Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systemat... Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates. 展开更多
关键词 Capillary barrier Landfill cover Particle size recycled concrete
下载PDF
Research Progress on the Influence of Varying Fiber Contents on Mechanical Properties of Recycled Concrete
19
作者 Zhenqing Shi Guomin Sun Jianyong Pang 《Structural Durability & Health Monitoring》 EI 2023年第3期239-255,共17页
Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements.However,the mech... Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements.However,the mechanical properties of recycled concrete are not as good as those of ordinary concrete.To enhance the former’s performance and increase its popularity and application in engineeringfields,notable advances have been made by using steel,synthetic,plant,and mineralfiber materials.These materials are added to recycled concrete to improve its mechanical properties.Studies have shown that(1)steelfibers have a distinct reinforcing effect and improve the strength,toughness,and elastic modulus of recycled concrete;(2)the addition of syntheticfibers can improve the tension,crack resistance,and durability of concrete,but the size effect needs to be further explored and elaborated;(3)plantfiber concrete is lightweight and environmentally friendly and provides high toughness and good thermal insulation,but thefibers corrode in alkaline environments;in addition,plantfibers have high water absorption capacity,which leads to wet expansion and dry shrinkage phenomena,which need to be further studied;and(4)the cost of basaltfiber,a mineralfiber,is relatively low,and a suitable basalt content can improve the mechanical properties of recycled concrete to a certain extent. 展开更多
关键词 recycled concrete fibers mechanical properties OVERVIEW
下载PDF
Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete
20
作者 Guiwu Lin Kaige Liu +2 位作者 Yuliang Chen Yunpeng Ji Rui Jiang 《Journal of Renewable Materials》 EI 2023年第11期3957-3975,共19页
This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were c... This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test.The failure modes,stress-strain whole curves,peak stress,peak strain,and energy dissipation capacity were systematically observed and revealed.Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete,corresponding to the enhancement of 81.75% and 22.90% on average.The addition of polyvinyl alcohol fiber can effectively improve the compressive strength and energy dissipation capacity of recycled aggregate concrete by 28.49% and 29.43% on average,respectively.The compressive strength and energy dissipation capacity of recycled aggregate concrete is increased by an average of 16.5% and 24.4% by incorporating carbon fiber.The energy dissipation capacity of recycled aggregate concrete is increased by an average of 13.5% with the incorporation of polypropylene fiber.However,the addition of carbon fiber results in a slight reduction of toughness by 16.97%,and the effect of polyvinyl alcohol fiber on the energy dissipation capacity is limited.Besides,with the increase in replacement rate,the compressive strength and the energy dissipation capacity of recycled coarse aggregate concrete with fiber decreased,and toughness first decreased and then increased.Finally,based on the analysis of test data,a segment-based stress-strain model of fiber recycled aggregate concrete was proposed,which shows good agreement with the test results. 展开更多
关键词 recycled aggregate concrete FIBER compressive properties energy dissipation TOUGHNESS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部