The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends com...The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA).展开更多
In this study, six composite reinforcements such as cement composite made of Abandoned Cell Husks (ASH), Stones, Wood chips, Concrete and Bricks have been used along with control specimen. It is known that the materia...In this study, six composite reinforcements such as cement composite made of Abandoned Cell Husks (ASH), Stones, Wood chips, Concrete and Bricks have been used along with control specimen. It is known that the material used in earth reinforcement applications must be safe against tension failure and adhesion failure for its effective utilization in the field and reliable design of earth structures. Single type of material can provide limited reinforcement capability in reinforced earth structures due to its low frictional resistance and poor cohesion. For an optimal response, therefore, composite reinforcement, that fulfils both the requirements such as possess adequate tensile strength and adequate frictional resistance, is getting considerable attention. Slope stability analyses containing six types of reinforcement have been performed. Stability of the slope has been quantified using minimum factor of safety corresponding to critical slip surface. It was observed that the composite reinforcement whose surface treated by brick aggregate enhanced the factor of safety significantly. The paper also depicted the design aids of reinforced slope in terms of embedding lengths and spacing of reinforcements.展开更多
Nowadays,the production of consumer goods is based on the use of non-renewable raw materials,which in recent years has been performing as a problem for the environment.Considering the large number of available biofib...Nowadays,the production of consumer goods is based on the use of non-renewable raw materials,which in recent years has been performing as a problem for the environment.Considering the large number of available biofibers in nature,their use in the development of polymeric composites has inevitably emerged,it is also necessary to take into account the countless discarded plastics that still have the potential to be reused.In this work,fibers were extracted from pineapple crown residues and utilized to compose sustainable composites using recycled polypropylene from cups discarded in the trash as a matrix.However,it is known that for good performance,it is necessary to achieve a good chemical interaction between the fiber and the matrix.In order to improve this interaction,alkaline mercerization treatment was carried out on the surface of the fibers removing some components incompatible with the polymer.In this work,the effect of the mercerization treatment on the properties of the fibers was studied,as well as their interaction with the matrix.The effect of fiber concentration on the mechanical and thermal properties of composites was also evaluated.Levels of 5 and 7 wt%were used for both natural and mercerized fibers.A decrease in the number of degradation stages was observed through thermogravimetry analyses(from four in natural fiber to two in mercerized fibers),showing that the mercerization performed on the fibers was effective.An increase in the degree of crystallinity of mercerized fibers was also observed through the results of X-ray diffraction.Both techniques indicate that amorphous compounds,such as hemicellulose and lignin,were partially removed.Through the tensile test,it could be noted that all composites presented higher values of de elastic modulus than recycled polypropylene without added load;however,there were no differences in the elastic modulus between the different types of fibers and load levels.Therefore,it is interesting to use fibers as reinforcing agents in polymers;however,the treatment did not increase the mechanical properties of the composites.In parallel,other factors,such as the dispersion of the components,must be taken into account to justify this result.展开更多
The development of alternative wood composites based on the use of waste or recycled materials can be beneficial due to over exploitation of natural resources.Under this frame,an option for the successful utilization ...The development of alternative wood composites based on the use of waste or recycled materials can be beneficial due to over exploitation of natural resources.Under this frame,an option for the successful utilization of waste polystyrene which avoids environmental problems that formaldehyde adhesives cause and also reduces waste dis-posal,is its potential application as a binder for the production of value-added environmentally friendly and low cost wood composites.Two types of panel were successfully made,consisting of wood dust and two recycled poly-styrene contents,namely,15%and 30%.Both physical properties,water absorption and thickness swelling,and mechanical properties,modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength,were significantly improved as the recycled polystyrene content increased from 15%to 30%.Water absorption and thickness swelling after 24 h immersion in water were improved by 165%and 750%as the recycled polystyrene content increased from 15%to 30%.The magnitude of the improvement in mechanical properties however,was less pronounced than of the physical properties since modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength were increased by 43.6%,50%and 61.5%,respec-tively.The low viscosity of the recycled polystyrene caused more mobility inside the panel matrix and therefore,an improved penetration took place into adequate depth of the compressed dust particles.It is concluded that boards can be successfully produced using these waste raw materials,wood dust and recycled polystyrene in organic solvent as a binder,and therefore it can reduce waste disposal and provide cleaner production for the development of wood-based boards.展开更多
This work investigates the feasibility of utilizing reactive recycled powder(RP)from construction and demolition(C&D)waste as supplementary cementitious material(SCM)to achieve a ductile strain hardening cementiti...This work investigates the feasibility of utilizing reactive recycled powder(RP)from construction and demolition(C&D)waste as supplementary cementitious material(SCM)to achieve a ductile strain hardening cementitious composites(SHCC).The recycled mortar powder(RMP)from mortar waste,recycled concrete powder(RCP)from concrete waste and recycled brick powder(RBP)from clay brick waste were first prepared,and the micro-properties and tensile behavior of SHCC containing various types and replacement ratios of RPs were determined.The incorporated RP promotes pozzolanic and filler effects,while the hydration products in cementitious materials decrease with RP incorporation;therefore,the incorporated RP decreases the compressive strength of SHCC.Attributed to the reduction in the matrix strength,the incorporated RP increases the crack-bridging extent and ductility of SHCC;the irregular micro-structure and high reactivity of RP also help the strain-hardening performance of the prepared SHCC.In addition,the strainhardening performance of SHCC containing RMP and RBP is surperior to that of SHCC with RCP and is slightly lower than that of SHCC with fly ash(FA);for instance,the ultimate strain of SHCC containing 54%FA,RMP,RCP and RBP is 3.67%,3.61%,2.52%and 3.53%,respectively.In addition,the strain-hardening behavior of an SHCC doubled mix with FA and RMP or RBP has a similar ultimate strain and a higher ultimate stress than SHCC containing only FA.展开更多
The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virg...The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.展开更多
This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production proc...This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production processes of various industrial products and to sustain waste management of these industries.In this study,different amounts of blast furnace dust(BFD),which is the major iron-steel industry waste and is used as filler for recycled low-density polyethylene(LDPE),was mixed with LDPE to produce the composite material.The morphology,mechanical,vicat softening temperature thermal conductivity,hardness and wear resistance properties of BFD filled LDPE composites were assessed.The increasing of BFD in recycled LDPE improved the heat resistance,increased thermal conductivity and wear resistance of composite materials.In addition,it was found that the composite materials had sufficient mechanical properties,when mechanical tests were evaluated.These results showed that the produced composite material could be used in buildings as a floor coating material and thereby saving raw materials and resources,as well as potentially reducing environmental problems.展开更多
Microstructures and properties of recycled composites ring parts containing cast tungsten carbide particles (CTCp) in a bainitic matrix fabricated from dead or waste composites roll rings by centrifugal casting after ...Microstructures and properties of recycled composites ring parts containing cast tungsten carbide particles (CTCp) in a bainitic matrix fabricated from dead or waste composites roll rings by centrifugal casting after remelting treatment, have been tested using SEM, EDS and XRD analyses as well as mechanical property testers. The test results show that the CTCp surface were partially dissolved into the liquid iron at 1650 oC during remelting. The undissolved CTCp in the Fe melt moved towards the outer region under the action of the centrifugal force during casting, which caused the formation of outer reinforced region and inner unreinforced region along the radial direction of the parts. SEM observation displays that the undissolved CTCp distribution in the outer region is even, and the volume fraction of them is increased with increasing rotational speed of the mold. Besides, mechanical tests of the parts show that the outer region exhibits superior hardness, and the inner region has sufficient impact toughness;the volume fraction of CTCP influences the mechanical properties. The dissolution-reprecipition of CTCP during centrifugal casting was also discussed.展开更多
The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. Th...The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.展开更多
In this study, the processing and mechanical properties of porous metal matrix composites(MMCs) composed of spheroidal cast iron chips(GGG40) and bronze chips(CuSn10) and formed by hot isostatic pressing were investig...In this study, the processing and mechanical properties of porous metal matrix composites(MMCs) composed of spheroidal cast iron chips(GGG40) and bronze chips(CuSn10) and formed by hot isostatic pressing were investigated. Bronze chips(CuSn10) were used as a matrix component, and spheroidal cast iron(GGG40) chips were used as a reinforcement component. The MMCs were produced with different CuSn10 contents(90 wt%, 80 wt%, 70 wt%, and 60 wt%). The hot isostatic pressing process was performed under three different pressures and temperatures. The produced MMCs were characterized using density tests, Brinell hardness tests, and compression tests. In addition, the consolidation mechanism was investigated by X-ray diffraction(XRD) analysis and scanning electron microscopy. The test results were compared with those for bulk CuSn10 and bulk GGG40. Mechanical tests results revealed that the metallic chips can be recycled by using hot pressing and that the mechanical properties of the produced MMCs were similar to those of bulk CuSn10. XRD and microscopy studies showed that no intermetallic compounds formed between the metallic chips. The results showed that the CuSn10 and GGG40 chips were consolidated by mechanical interlocking.展开更多
Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently...Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently utilized for recycling.The CGR contains abundant carbon components,which could be applied to the microwave absorption field as the carbon matrix.In this study,Fe/CGR composites are fabricated via a two-step method,including the impregnation of Fe^(3+)and the reduction process.The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied.Moreover,the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution.Meanwhile,Fe particles are evenly inserted on the CGR framework,which expands the Fe/CGR interfaces to enhance interfacial polarization,thus further improving the microwave-absorbing(MA)properties of composites.Particularly,as the Fe^(3+)concentration is 1.0 mol/L,the Fe/CGR composite exhibits outstanding performance.The reflection loss reaches-39.3 dB at 2.5 mm,and the absorption bandwidth covers 4.1 GHz at 1.5 mm.In this study,facile processability,resource recycling,appropriately matched impedance,and excellent MA performance are achieved.Finally,the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.展开更多
In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorize...In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.展开更多
Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conv...Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.展开更多
In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitroge...In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitrogen atmosphere. The effects of reaction temperature, reaction time, and carbon content on the metallization and dezincification ratios of the composite briquettes were studied. The reduced com- posite briquettes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The results show that the gravity dust and converter sludge are combined into the composite briquettes and a reasonable combination not only improves the performance of the composite briquettes, but also leads to the reduction with no or little reductant and flux. As the re- action temperature is increased and the reaction time is extended, the metallization and dezincification ratios of the composite briquettes in- crease gradually. When the composite briquettes are roasted at 1300℃ for 30 rain, the metallization ratio and dezineification ratio reaches 91.35% and 99.25%, respectively, indicating that most of the iron oxide is reduced and the zinc is almost completely removed. The carbon content is observed to exert a lesser effect on the reduction process; as the C/O molar ratio increases, the metallization and dezincification ra- tios first increase and then decrease.展开更多
The characteristics of surface appearances,mass loss,relative dynamic modulus of elasticity and strength loss of different recycled aggregate concretes(RAC) exposed to freeze-thaw cycles were analyzed.It was found tha...The characteristics of surface appearances,mass loss,relative dynamic modulus of elasticity and strength loss of different recycled aggregate concretes(RAC) exposed to freeze-thaw cycles were analyzed.It was found that the freeze-thaw resistance of RAC could be determined by the recycled aggregate compositions and admixtures.Both the saturation degree and the air void structure were the key factors influencing the freeze-thaw damage on concrete.Some major proposed freeze-thaw deterioration mechanisms were utilized to interpret the freeze-thaw damage on recycled aggregate concrete.Meanwhile,some potential measures to enhance the freeze-thaw resistance of concrete were summarized and discussed.展开更多
The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high tem...The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high temperature mechanical and creep properties of AZ91 alloy and its composites with various recycled carbon fibre contents(2.5 and 5 wt.%)and lengths(100 and 500μm)were investigated in the temperature range of 25-200℃.The microstructural characterization showed that the high shear dispersion technique provided the cast composites with finer grains and relatively homogenous distribution of fibres.The materials tested displayed different behaviour depending on the type of loading.In general,while enhancements in the mechanical properties of composites is attributed to the load bearing and grain refinement effects of fibres,the fluctuations in the properties were discussed on the basis of porosity formation,relatively high reinforcement content leading to fibre clustering and interlayer found between the matrix and reinforcement compared to those of AZ91 alloy.The compressive creep tests revealed similar or higher minimum creep rates in the recycled carbon fibre reinforced AZ91 in comparison to the unreinforced AZ91.展开更多
New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materi...New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materials in the rolling processes from plastic packaging is intended to optimize the efficiency of packaging. Nevertheless, these materials prevent the recycling of packaging because they become contaminants to the recycling process. Food multilayered packaging containing poly (ethylene terephthalate) PET, poly (ethylene) PE and aluminum was used as filler in the preparation of composites with post-consumer high density polyethylene matrix. Composites containing up to 50 wt% of filler were feasible to prepare, allowing the obtention of a material with varied mechanical and thermal properties. This feature allows the preparation of composites suitable for specific application. The addition of multilayer matter in the polyethylene matrix provided a material with excellent mechanical properties such as higher tensile impact strength (148 J/m) and elasticity (350 MPa) as compared to pure polyethylene (40 J/m and 450 MPa).展开更多
In this paper, a continuous polymeric matrix highly filled with fiber of sugarcane bagasse has been obtained and its feasibility as an ink-absorbing material has been evaluated. In order to study the effect of the amo...In this paper, a continuous polymeric matrix highly filled with fiber of sugarcane bagasse has been obtained and its feasibility as an ink-absorbing material has been evaluated. In order to study the effect of the amount of cellulose fiber on the surface printability, contact angle measurement using different liquids—water-based inks, ethanol and ink for ink-jet printers—and printing tests were performed on composites of high density polyethylene (HDPE) and sugarcane bagasse (SCB). The composites were processed in a Haake internal mixer, using the SCB without any previous chemical treatment or compatibilizer. The differential scanning calorimetry (DSC) and derivative thermogravimetry (TG/ DTG) revealed an increase in the thermal stability and in the degree of crystallinity of the HDPE. The optical microscopy (OM) and scanning electron microscopy (SEM) showed that the cellulosic material was homogeneously embedded within the HDPE matrix. In order to assess the resistance of the composite sample to the pull strength of the printer, tensile tests were applied to the composites and the results were compared to known paper samples. The best result was achieved in the composite with the highest content of SCB, as well as the shortest drying time.展开更多
Cadmium(Cd) contamination in soils is a global ecological threat. Conventional powdered biochar added to soil can temporarily immobilize Cd but is difficult to separate from soil, leading to secondary release of Cd an...Cadmium(Cd) contamination in soils is a global ecological threat. Conventional powdered biochar added to soil can temporarily immobilize Cd but is difficult to separate from soil, leading to secondary release of Cd and posing potential ecological and human health risks. The blocky biochar is also difficult to separate from the soil due to its fragile nature. One of the keys to overcome the difficulties in separating biochar from soil is to improve its mechanical strength. Blocky zeolite-biochar composites(ZBC) that have good mechanical strength were obtained after pyrolyzing the mixture of 50% feedstock and 50% zeolite powder at 400 ℃. ZBC and NaOH-activated ZBC(ZBC_a) were applied to remove Cd from soil. After sieving Cd-loaded ZBC and ZBC_a from soil, the bioavailable Cd content in the soil decreased by 59.70% and 68.54%,respectively. Zeolite contributed to improving both adsorption performance and mechanical properties of the composites. After repeating the process of “remediation-sieving-desorption-regeneration” three times, the recoveries of ZBC and ZBC_a were above 97.00%, and regeneration rates were 48.70-83.26%,respectively. Under simulated mechanical sieving conditions, ZBC and ZBC_a lost only 4.06% and 5.40%of their mass and retained their integrity. Remediation of Cd-contaminated soil with blocky zeolitebiochar composite is sustainable and safe because the removal of bioavailable Cd from soil is permanent rather than a temporary decrease of bioavailability. This study provides a reference for the preparation of separable and recyclable adsorbents for the removal of contaminants from soil.展开更多
基金supported by the National High Technology Research and Development Program of China(2010AA101703)the Natural Science Foundation of Heilongjiang Province of China (C200950)the Fundamental Research Fundsfor the Central Universities (DL09BB38)
文摘The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA).
文摘In this study, six composite reinforcements such as cement composite made of Abandoned Cell Husks (ASH), Stones, Wood chips, Concrete and Bricks have been used along with control specimen. It is known that the material used in earth reinforcement applications must be safe against tension failure and adhesion failure for its effective utilization in the field and reliable design of earth structures. Single type of material can provide limited reinforcement capability in reinforced earth structures due to its low frictional resistance and poor cohesion. For an optimal response, therefore, composite reinforcement, that fulfils both the requirements such as possess adequate tensile strength and adequate frictional resistance, is getting considerable attention. Slope stability analyses containing six types of reinforcement have been performed. Stability of the slope has been quantified using minimum factor of safety corresponding to critical slip surface. It was observed that the composite reinforcement whose surface treated by brick aggregate enhanced the factor of safety significantly. The paper also depicted the design aids of reinforced slope in terms of embedding lengths and spacing of reinforcements.
基金The authors would like to thank CAPES(Finance Code 001 and Process PNPD20131474-33001014004P9)and CNPq for financial support.
文摘Nowadays,the production of consumer goods is based on the use of non-renewable raw materials,which in recent years has been performing as a problem for the environment.Considering the large number of available biofibers in nature,their use in the development of polymeric composites has inevitably emerged,it is also necessary to take into account the countless discarded plastics that still have the potential to be reused.In this work,fibers were extracted from pineapple crown residues and utilized to compose sustainable composites using recycled polypropylene from cups discarded in the trash as a matrix.However,it is known that for good performance,it is necessary to achieve a good chemical interaction between the fiber and the matrix.In order to improve this interaction,alkaline mercerization treatment was carried out on the surface of the fibers removing some components incompatible with the polymer.In this work,the effect of the mercerization treatment on the properties of the fibers was studied,as well as their interaction with the matrix.The effect of fiber concentration on the mechanical and thermal properties of composites was also evaluated.Levels of 5 and 7 wt%were used for both natural and mercerized fibers.A decrease in the number of degradation stages was observed through thermogravimetry analyses(from four in natural fiber to two in mercerized fibers),showing that the mercerization performed on the fibers was effective.An increase in the degree of crystallinity of mercerized fibers was also observed through the results of X-ray diffraction.Both techniques indicate that amorphous compounds,such as hemicellulose and lignin,were partially removed.Through the tensile test,it could be noted that all composites presented higher values of de elastic modulus than recycled polypropylene without added load;however,there were no differences in the elastic modulus between the different types of fibers and load levels.Therefore,it is interesting to use fibers as reinforcing agents in polymers;however,the treatment did not increase the mechanical properties of the composites.In parallel,other factors,such as the dispersion of the components,must be taken into account to justify this result.
基金This research is co-financed by Greece and the European Union(European Social Fund-ESF)through the Operational Programme‘Human Resources,Development,Education and Lifelong Learning 2014-2020’in the context of the project‘Innovative wood plastic composites made from recycled polystyrene and recycled wood chips’(MIS 5048422).
文摘The development of alternative wood composites based on the use of waste or recycled materials can be beneficial due to over exploitation of natural resources.Under this frame,an option for the successful utilization of waste polystyrene which avoids environmental problems that formaldehyde adhesives cause and also reduces waste dis-posal,is its potential application as a binder for the production of value-added environmentally friendly and low cost wood composites.Two types of panel were successfully made,consisting of wood dust and two recycled poly-styrene contents,namely,15%and 30%.Both physical properties,water absorption and thickness swelling,and mechanical properties,modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength,were significantly improved as the recycled polystyrene content increased from 15%to 30%.Water absorption and thickness swelling after 24 h immersion in water were improved by 165%and 750%as the recycled polystyrene content increased from 15%to 30%.The magnitude of the improvement in mechanical properties however,was less pronounced than of the physical properties since modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength were increased by 43.6%,50%and 61.5%,respec-tively.The low viscosity of the recycled polystyrene caused more mobility inside the panel matrix and therefore,an improved penetration took place into adequate depth of the compressed dust particles.It is concluded that boards can be successfully produced using these waste raw materials,wood dust and recycled polystyrene in organic solvent as a binder,and therefore it can reduce waste disposal and provide cleaner production for the development of wood-based boards.
基金The authors gratefully acknowledge the project funded by Key R&D Program of China 2018YFD1101002National Natural Science Foundation of China(51778309).
文摘This work investigates the feasibility of utilizing reactive recycled powder(RP)from construction and demolition(C&D)waste as supplementary cementitious material(SCM)to achieve a ductile strain hardening cementitious composites(SHCC).The recycled mortar powder(RMP)from mortar waste,recycled concrete powder(RCP)from concrete waste and recycled brick powder(RBP)from clay brick waste were first prepared,and the micro-properties and tensile behavior of SHCC containing various types and replacement ratios of RPs were determined.The incorporated RP promotes pozzolanic and filler effects,while the hydration products in cementitious materials decrease with RP incorporation;therefore,the incorporated RP decreases the compressive strength of SHCC.Attributed to the reduction in the matrix strength,the incorporated RP increases the crack-bridging extent and ductility of SHCC;the irregular micro-structure and high reactivity of RP also help the strain-hardening performance of the prepared SHCC.In addition,the strainhardening performance of SHCC containing RMP and RBP is surperior to that of SHCC with RCP and is slightly lower than that of SHCC with fly ash(FA);for instance,the ultimate strain of SHCC containing 54%FA,RMP,RCP and RBP is 3.67%,3.61%,2.52%and 3.53%,respectively.In addition,the strain-hardening behavior of an SHCC doubled mix with FA and RMP or RBP has a similar ultimate strain and a higher ultimate stress than SHCC containing only FA.
文摘The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.
基金funded by Gazi University Scientific Research Center(Contract No.48/2013-01).
文摘This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production processes of various industrial products and to sustain waste management of these industries.In this study,different amounts of blast furnace dust(BFD),which is the major iron-steel industry waste and is used as filler for recycled low-density polyethylene(LDPE),was mixed with LDPE to produce the composite material.The morphology,mechanical,vicat softening temperature thermal conductivity,hardness and wear resistance properties of BFD filled LDPE composites were assessed.The increasing of BFD in recycled LDPE improved the heat resistance,increased thermal conductivity and wear resistance of composite materials.In addition,it was found that the composite materials had sufficient mechanical properties,when mechanical tests were evaluated.These results showed that the produced composite material could be used in buildings as a floor coating material and thereby saving raw materials and resources,as well as potentially reducing environmental problems.
文摘Microstructures and properties of recycled composites ring parts containing cast tungsten carbide particles (CTCp) in a bainitic matrix fabricated from dead or waste composites roll rings by centrifugal casting after remelting treatment, have been tested using SEM, EDS and XRD analyses as well as mechanical property testers. The test results show that the CTCp surface were partially dissolved into the liquid iron at 1650 oC during remelting. The undissolved CTCp in the Fe melt moved towards the outer region under the action of the centrifugal force during casting, which caused the formation of outer reinforced region and inner unreinforced region along the radial direction of the parts. SEM observation displays that the undissolved CTCp distribution in the outer region is even, and the volume fraction of them is increased with increasing rotational speed of the mold. Besides, mechanical tests of the parts show that the outer region exhibits superior hardness, and the inner region has sufficient impact toughness;the volume fraction of CTCP influences the mechanical properties. The dissolution-reprecipition of CTCP during centrifugal casting was also discussed.
文摘The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.
基金financially supported by the Scientific and Technological Research Council of Turkey(TUBITAK,No.113M141)
文摘In this study, the processing and mechanical properties of porous metal matrix composites(MMCs) composed of spheroidal cast iron chips(GGG40) and bronze chips(CuSn10) and formed by hot isostatic pressing were investigated. Bronze chips(CuSn10) were used as a matrix component, and spheroidal cast iron(GGG40) chips were used as a reinforcement component. The MMCs were produced with different CuSn10 contents(90 wt%, 80 wt%, 70 wt%, and 60 wt%). The hot isostatic pressing process was performed under three different pressures and temperatures. The produced MMCs were characterized using density tests, Brinell hardness tests, and compression tests. In addition, the consolidation mechanism was investigated by X-ray diffraction(XRD) analysis and scanning electron microscopy. The test results were compared with those for bulk CuSn10 and bulk GGG40. Mechanical tests results revealed that the metallic chips can be recycled by using hot pressing and that the mechanical properties of the produced MMCs were similar to those of bulk CuSn10. XRD and microscopy studies showed that no intermetallic compounds formed between the metallic chips. The results showed that the CuSn10 and GGG40 chips were consolidated by mechanical interlocking.
基金supported by the National Nature Science Foundation of China(No.51802212)the National College Students’Innovation and Entrepreneurship Training Program(No.2021465)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.201801D221119)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(Nos.ZBKF2022030802 and ZBKF2022030702)the Graduate Education Innovation Programs of Taiyuan University of Science and Technology(No.XCX212003)。
文摘Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently utilized for recycling.The CGR contains abundant carbon components,which could be applied to the microwave absorption field as the carbon matrix.In this study,Fe/CGR composites are fabricated via a two-step method,including the impregnation of Fe^(3+)and the reduction process.The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied.Moreover,the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution.Meanwhile,Fe particles are evenly inserted on the CGR framework,which expands the Fe/CGR interfaces to enhance interfacial polarization,thus further improving the microwave-absorbing(MA)properties of composites.Particularly,as the Fe^(3+)concentration is 1.0 mol/L,the Fe/CGR composite exhibits outstanding performance.The reflection loss reaches-39.3 dB at 2.5 mm,and the absorption bandwidth covers 4.1 GHz at 1.5 mm.In this study,facile processability,resource recycling,appropriately matched impedance,and excellent MA performance are achieved.Finally,the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.
文摘In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.
文摘Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.
基金financially supported by the National Natural Science Foundation of China(No.U1260202)the National Basic Research Priorities Program of China(No.2012CB720401)the State Key Laboratory of Solid Waste Reuse for Building Materials
文摘In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitrogen atmosphere. The effects of reaction temperature, reaction time, and carbon content on the metallization and dezincification ratios of the composite briquettes were studied. The reduced com- posite briquettes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The results show that the gravity dust and converter sludge are combined into the composite briquettes and a reasonable combination not only improves the performance of the composite briquettes, but also leads to the reduction with no or little reductant and flux. As the re- action temperature is increased and the reaction time is extended, the metallization and dezincification ratios of the composite briquettes in- crease gradually. When the composite briquettes are roasted at 1300℃ for 30 rain, the metallization ratio and dezineification ratio reaches 91.35% and 99.25%, respectively, indicating that most of the iron oxide is reduced and the zinc is almost completely removed. The carbon content is observed to exert a lesser effect on the reduction process; as the C/O molar ratio increases, the metallization and dezincification ra- tios first increase and then decrease.
基金Funded by the National Key Research and Development Program of China during the“13th Five-Year Plan”(No.2018 YFD1101001)。
文摘The characteristics of surface appearances,mass loss,relative dynamic modulus of elasticity and strength loss of different recycled aggregate concretes(RAC) exposed to freeze-thaw cycles were analyzed.It was found that the freeze-thaw resistance of RAC could be determined by the recycled aggregate compositions and admixtures.Both the saturation degree and the air void structure were the key factors influencing the freeze-thaw damage on concrete.Some major proposed freeze-thaw deterioration mechanisms were utilized to interpret the freeze-thaw damage on recycled aggregate concrete.Meanwhile,some potential measures to enhance the freeze-thaw resistance of concrete were summarized and discussed.
基金the German Academic Exchange Service(DAAD)for the scholarship。
文摘The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high temperature mechanical and creep properties of AZ91 alloy and its composites with various recycled carbon fibre contents(2.5 and 5 wt.%)and lengths(100 and 500μm)were investigated in the temperature range of 25-200℃.The microstructural characterization showed that the high shear dispersion technique provided the cast composites with finer grains and relatively homogenous distribution of fibres.The materials tested displayed different behaviour depending on the type of loading.In general,while enhancements in the mechanical properties of composites is attributed to the load bearing and grain refinement effects of fibres,the fluctuations in the properties were discussed on the basis of porosity formation,relatively high reinforcement content leading to fibre clustering and interlayer found between the matrix and reinforcement compared to those of AZ91 alloy.The compressive creep tests revealed similar or higher minimum creep rates in the recycled carbon fibre reinforced AZ91 in comparison to the unreinforced AZ91.
文摘New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materials in the rolling processes from plastic packaging is intended to optimize the efficiency of packaging. Nevertheless, these materials prevent the recycling of packaging because they become contaminants to the recycling process. Food multilayered packaging containing poly (ethylene terephthalate) PET, poly (ethylene) PE and aluminum was used as filler in the preparation of composites with post-consumer high density polyethylene matrix. Composites containing up to 50 wt% of filler were feasible to prepare, allowing the obtention of a material with varied mechanical and thermal properties. This feature allows the preparation of composites suitable for specific application. The addition of multilayer matter in the polyethylene matrix provided a material with excellent mechanical properties such as higher tensile impact strength (148 J/m) and elasticity (350 MPa) as compared to pure polyethylene (40 J/m and 450 MPa).
文摘In this paper, a continuous polymeric matrix highly filled with fiber of sugarcane bagasse has been obtained and its feasibility as an ink-absorbing material has been evaluated. In order to study the effect of the amount of cellulose fiber on the surface printability, contact angle measurement using different liquids—water-based inks, ethanol and ink for ink-jet printers—and printing tests were performed on composites of high density polyethylene (HDPE) and sugarcane bagasse (SCB). The composites were processed in a Haake internal mixer, using the SCB without any previous chemical treatment or compatibilizer. The differential scanning calorimetry (DSC) and derivative thermogravimetry (TG/ DTG) revealed an increase in the thermal stability and in the degree of crystallinity of the HDPE. The optical microscopy (OM) and scanning electron microscopy (SEM) showed that the cellulosic material was homogeneously embedded within the HDPE matrix. In order to assess the resistance of the composite sample to the pull strength of the printer, tensile tests were applied to the composites and the results were compared to known paper samples. The best result was achieved in the composite with the highest content of SCB, as well as the shortest drying time.
基金supported by the National Key Research and Development Program of China, China (2019YFC1904102)。
文摘Cadmium(Cd) contamination in soils is a global ecological threat. Conventional powdered biochar added to soil can temporarily immobilize Cd but is difficult to separate from soil, leading to secondary release of Cd and posing potential ecological and human health risks. The blocky biochar is also difficult to separate from the soil due to its fragile nature. One of the keys to overcome the difficulties in separating biochar from soil is to improve its mechanical strength. Blocky zeolite-biochar composites(ZBC) that have good mechanical strength were obtained after pyrolyzing the mixture of 50% feedstock and 50% zeolite powder at 400 ℃. ZBC and NaOH-activated ZBC(ZBC_a) were applied to remove Cd from soil. After sieving Cd-loaded ZBC and ZBC_a from soil, the bioavailable Cd content in the soil decreased by 59.70% and 68.54%,respectively. Zeolite contributed to improving both adsorption performance and mechanical properties of the composites. After repeating the process of “remediation-sieving-desorption-regeneration” three times, the recoveries of ZBC and ZBC_a were above 97.00%, and regeneration rates were 48.70-83.26%,respectively. Under simulated mechanical sieving conditions, ZBC and ZBC_a lost only 4.06% and 5.40%of their mass and retained their integrity. Remediation of Cd-contaminated soil with blocky zeolitebiochar composite is sustainable and safe because the removal of bioavailable Cd from soil is permanent rather than a temporary decrease of bioavailability. This study provides a reference for the preparation of separable and recyclable adsorbents for the removal of contaminants from soil.