期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Influence of recycled carbon fiber addition on the microstructure and creep response of extruded AZ91 magnesium alloy
1
作者 Sinan Kandemir Jan Bohlen Hajo Dieringa 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2518-2529,共12页
In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(... In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep. 展开更多
关键词 Metal matrix composites Magnesium alloys recycled carbon fiber Extrusion Microstructure Mechanical properties CREEP
下载PDF
Shear strength of clayey sand treated by nanoclay mixed with recycled polyester fiber 被引量:2
2
作者 Mehrdad KHOLGHIFARD Babak AMINI BEHBAHANI 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期259-269,共11页
The main objective of this study is to investigate the effects of the nanoclay mixed with recycled polyester fiber on the mechanical behavior of soil as a new stabilizer material.To meet this objective,a series of dra... The main objective of this study is to investigate the effects of the nanoclay mixed with recycled polyester fiber on the mechanical behavior of soil as a new stabilizer material.To meet this objective,a series of drained direct shear and compaction tests were performed on unreinforced and reinforced soil specimens with three different combinations of the fiber-soil ratios ranging between 0.1%and 0.5%,as well as three different combinations of nanoclay soil ratios ranging between 0.5%and 1.5%of the soil dry weight.Results indicated that composition of the nanoclay recycled polyester fiber with the soil improved the friction angle(Φ)by 41%and cohesion(c)by 174%.The soil particles stick together through viscose gel produced by nanoclay.In addition,the rough and wavy surface of the fibers creates a bond and friction between the soil particles and prevents the movement of soil particles,and as a result,the soil strength is increased. 展开更多
关键词 soil treatment NANOCLAY recycled polyester fiber shear strength clayey sand
下载PDF
Characterization of carbon fibers recovered through mechanochemical-enhanced recycling of waste carbon fiber reinforced plastics 被引量:2
3
作者 NZIOKA Antony Mutua ALUNDA Bernard Ouma +4 位作者 YAN Cao-zheng SIM Ye-Jin KIM Myung-Gyun YOON Bok-Young KIM Young-Ju 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2688-2703,共16页
In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ... In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process. 展开更多
关键词 recycled carbon fibers fiber reinforced plastics mechanochemical process interfacial property surface morphology
下载PDF
Manufacturing and Product Analysis of Non-Woven and Paper Based Epoxy Composites
4
作者 Vinay Kumar Kotike Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 CAS 2023年第2期29-45,共17页
Fiber-reinforced polymer composites are used in a wide variety of applications due to their many advantages, such as relatively low production costs, ease of fabrication, and superior strength compared to pure polymer... Fiber-reinforced polymer composites are used in a wide variety of applications due to their many advantages, such as relatively low production costs, ease of fabrication, and superior strength compared to pure polymer resins. Polymer reinforcement can be either synthetic or natural. Synthetic fibers such as carbon have high specific strength, but their application fields are limited due to their high manufacturing cost. Recently, interest in recycled fiber-based composites has increased due to their many advantages. In this context, research has been carried out to better utilize non-woven and paper-based materials to make value-added products. The aim of the current research work is to compare the mechanical performance of non-woven and paper-based reinforced epoxy composites manufactured by the VARTM process. Mechanical properties such as tensile strength, flexural strength (using three-point bending), impact strength, hardness strength, and water absorption were measured. A multi-criteria decision approach called TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) was used to select the best alternative from the investigated materials. 展开更多
关键词 recycled fibers Nonwovens and Papers VARTM Mechanical Properties TOPSIS
下载PDF
In-Situ Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption
5
作者 Lei Liu Shenao Pang Zhuhui Luo 《Journal of Renewable Materials》 EI 2023年第11期3891-3906,共16页
The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society.Herein,branched carbon nanofibers(CNFs)were grown in-s... The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society.Herein,branched carbon nanofibers(CNFs)were grown in-situ on recycled carbon fibers(RCFs)through the chemical vapor deposition method using nickel as catalysts and thiophene as aided-catalysts.The effect of thiophene on the growth morphology of CNFs was investigated.Correspondingly,branched CNFs-RCFs and straight CNFs-RCFs were respectively obtained in the presence and absence of thiophene.The microstructure and electromagnetic behaviour investigations have shown that the branched CNFs possess a typical multi-branched structure,with more defects,pores and a larger specific surface area than the straight CNFs,which lead to better impedance matching and adequate dielectric loss ability for the branched CNFs-RCFs.The reflection loss(RL)results show that the branched CNFs-RCFs exhibit an optimum RL of -23.6 dB at 1.5 mm and a best effective absorption bandwidth(EAB)of 7.5 GHz at 2.0 mm.This research provides an innovative microwave absorbing material with adequate absorbing strength and outstanding EAB,while also promoting the sustainable reuse of the RCFs resources. 展开更多
关键词 Branched carbon nanofibers recycled carbon fibers in-situ growing microwave absorption
下载PDF
Punching shear behavior of steel fiber reinforced recycled coarse aggregate concrete two-way slab without shear reinforcement
6
作者 Yongming YAN Danying GAO Feifei LUO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第10期1556-1575,共20页
In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.... In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.The effects of RCA replacement ratio(rg)and SF volume fraction(Vf)on the punching shear performance of SFRCAC two-way slabs were investigated.Digital Image Correlation(DIC)measurement and Acoustic Emission(AE)technique were introduced to collect pictures and relevant data during the punching shear test.The test results show that the SFRCAC two-way slab mainly exhibits punching shear failure and flexure failure under local concentric load.The punching shear failure space area of SFRCAC two-way slab has no obvious change with increasing rg,however,show a gradual increase trend with increasing Vf.Both of the punching shear ultimate bearing capacity(Pu)and its deflection of SFRCAC two-way slab decrease with increasing rg and increase with increasing Vf,respectively.Finally,through the regression analysis of the results from this study and the data collected from related literature,the influence of rg and Vf on the Pu of two-way slabs were obtained,and the equations in GB 50010-2010,ACI 318-19,and Eurocode 2 Codes were amended,respectively.Furthermore,the amended equations were all applicable to predicted the ultimate bearing capacity of the ordinary concrete two-way slab,RCAC two-way slab,SFRC two-way slab,and SFRCAC two-way slab. 展开更多
关键词 recycled coarse aggregate steel fiber reinforced recycled coarse aggregate concrete two-way slab punching shear punching shear ultimate bearing capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部