The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies ha...The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450℃ for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450℃ for 10 min using composite pellets containing 60% PET and 40% coke.展开更多
In this article, based on the analysis of the current environmental situation in Russia and other countries, as well as of the problem of recycling plastic waste in the Russian Federation (RF), the authors clearly s...In this article, based on the analysis of the current environmental situation in Russia and other countries, as well as of the problem of recycling plastic waste in the Russian Federation (RF), the authors clearly show the effectiveness of investments in the processing of polymer debris on the example of polyethylene terephthalate (PET) waste (granulates, flakes). In the frame of case study of social and environmental investment project on creating enterprise that will engage in collection, recycling, and sale of the consumer PET packaging in Russia, the authors demonstrate the economic feasibility of the creation of such kind of enterprises taking into account market conditions and the features of the existing system of taxation in Russia. The realization of the project will also help in solving environmental and social problems of large cities, in particular, will create more jobs (in terms of 6% of unemployment rate in the country). The study also identifies the main obstacles in the way of waste recycling in Russia, and the recommendations for improvement of normative base of the industry are given.展开更多
Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) ...Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) the monomer of PET as common used organiclinker for synthesis of functional Metal–organic-frameworks (PET-derived MOFs) such as UiO-66, MIL-101, etc. This sustainable and costeffective“Waste-to-MOFs” model is of great significant to be intensively investigated in the past years. Attributes of substantial porosity, specificsurface area, exposed metal centers, uniform structure, and flexible morphology render PET-derived MOFs are well-suited for applications inadsorption, energy storage, catalysis, among others. Herein, in the present work, we have summarized recent advances in synthesis of PETderived MOFs using ex-situ and in-situ methods for typical applications of adsorption, catalysis and energy storage. Despite those improvementsin synthesis methods and potential applications, challenges still remain in development of green and economical routes to fully utilize waste PETfor massive manufacture of valuable MOF materials and chemicals. This review provides insights into the conversion of non-degradable PETwaste to value-added MOF materials, and further suggests promising perspectives to develop the sustainable “Waste-to-MOFs” model inaddressing environmental pollution and energy crises.展开更多
The depolymerization of poly(ethylene terephthalate, PET) in supercritical methanol is studied using a stainless stirred autoclave at temperature of 255-260℃, pressure of 8.5-14.0 MPa, and methanol/PET weight ratio o...The depolymerization of poly(ethylene terephthalate, PET) in supercritical methanol is studied using a stainless stirred autoclave at temperature of 255-260℃, pressure of 8.5-14.0 MPa, and methanol/PET weight ratio of 3-8. Under the optimal conditions, the PET is depolymerized completely to its monomers in 60 min. The main products of the reaction are dimethyl terephthalate and ethylene glycol. There are still some small amounts of byproducts, such as methyl-(2-hydroxyethyl) terephthalate, bis(hydroxyethyl) terephthalate, dimers and oligomers. Reversed-phase high performance liquid chrom- atography and gas chromatography are used to analyze solid products and liquid products respectively. The results of depolymerization show that the yield of dimethyl terephthalate and the degree of PET depolymerization are dependent on the reaction temperature, weight ratio of methanol to PET and reaction time. But the reaction pressure has little influence on the depolymerization as long as methanol is in supercritical state.展开更多
A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe effic...A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement.展开更多
Plastic waste management has emerged as a critical environmental issue due to the exponential increase in plastic consumption worldwide.Polyethylene terephthalate(PET)is extensively used in the production of water bot...Plastic waste management has emerged as a critical environmental issue due to the exponential increase in plastic consumption worldwide.Polyethylene terephthalate(PET)is extensively used in the production of water bottles,which constitutes a significant fraction of the plastic waste.PET recycling is a challenging task due to the lack of efficient and cost-effective depolymerization methods.In this study,we developed a microwave(MW)catalytic depolymerization method for PET recycling using modified zinc oxide loaded with manganese oxide as a cocatalyst.The modified Mn_(3)O_(4)/ZnO catalyst presents high efficiency in depolymerizing PET into its monomers with only 0.4 wt% ratio of the catalyst to PET at 175℃ for 5 min,resulting in 100% conversion of PET and 88% selectivity toward bis-hydroxyethyl terephthalate monomers.It is believed that Mn_(3)O_(4)provides additional Lewis acid sites,promoting the dissociation of glycol from PET,and the MW irradiation plays a crucial role in rapidly heating the ethylene glycol and the catalyst,thereby accelerating the PET depolymerization process.In addition,the heterogeneous nature of the catalyst facilitates its easy separation from the reaction mixture for reuse,simplifying the catalyst recovery process and enabling costeffective and sustainable PET recycling.Thus,this study provides an innovative and sustainable solution for PET recycling,contributing toward the circular economy and mitigating the environmental impact of plastic waste.展开更多
基金financially supported by Yildiz Technical University Scientific Research Projects Coordination Department (No. 2011-07-02-KAP02)
文摘The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450℃ for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450℃ for 10 min using composite pellets containing 60% PET and 40% coke.
文摘In this article, based on the analysis of the current environmental situation in Russia and other countries, as well as of the problem of recycling plastic waste in the Russian Federation (RF), the authors clearly show the effectiveness of investments in the processing of polymer debris on the example of polyethylene terephthalate (PET) waste (granulates, flakes). In the frame of case study of social and environmental investment project on creating enterprise that will engage in collection, recycling, and sale of the consumer PET packaging in Russia, the authors demonstrate the economic feasibility of the creation of such kind of enterprises taking into account market conditions and the features of the existing system of taxation in Russia. The realization of the project will also help in solving environmental and social problems of large cities, in particular, will create more jobs (in terms of 6% of unemployment rate in the country). The study also identifies the main obstacles in the way of waste recycling in Russia, and the recommendations for improvement of normative base of the industry are given.
基金supported by the National Natural Science Foundation of China(21902105,52274172)Shenzhen Science and Technology Program(JCYJ20210324094000001)Guangdong Basic and Applied Basic Research Foundation(2020A1515010471).
文摘Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) the monomer of PET as common used organiclinker for synthesis of functional Metal–organic-frameworks (PET-derived MOFs) such as UiO-66, MIL-101, etc. This sustainable and costeffective“Waste-to-MOFs” model is of great significant to be intensively investigated in the past years. Attributes of substantial porosity, specificsurface area, exposed metal centers, uniform structure, and flexible morphology render PET-derived MOFs are well-suited for applications inadsorption, energy storage, catalysis, among others. Herein, in the present work, we have summarized recent advances in synthesis of PETderived MOFs using ex-situ and in-situ methods for typical applications of adsorption, catalysis and energy storage. Despite those improvementsin synthesis methods and potential applications, challenges still remain in development of green and economical routes to fully utilize waste PETfor massive manufacture of valuable MOF materials and chemicals. This review provides insights into the conversion of non-degradable PETwaste to value-added MOF materials, and further suggests promising perspectives to develop the sustainable “Waste-to-MOFs” model inaddressing environmental pollution and energy crises.
基金Supported by the Shanxi Province Foundation for Youth Scientist (No.: 981016)
文摘The depolymerization of poly(ethylene terephthalate, PET) in supercritical methanol is studied using a stainless stirred autoclave at temperature of 255-260℃, pressure of 8.5-14.0 MPa, and methanol/PET weight ratio of 3-8. Under the optimal conditions, the PET is depolymerized completely to its monomers in 60 min. The main products of the reaction are dimethyl terephthalate and ethylene glycol. There are still some small amounts of byproducts, such as methyl-(2-hydroxyethyl) terephthalate, bis(hydroxyethyl) terephthalate, dimers and oligomers. Reversed-phase high performance liquid chrom- atography and gas chromatography are used to analyze solid products and liquid products respectively. The results of depolymerization show that the yield of dimethyl terephthalate and the degree of PET depolymerization are dependent on the reaction temperature, weight ratio of methanol to PET and reaction time. But the reaction pressure has little influence on the depolymerization as long as methanol is in supercritical state.
基金This research was funded by the Ministry of Science and Technology of Taiwan,Grant No.MOST 109-2634-F-027-001.
文摘A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement.
基金UK EPSRC project(EP/S018204/2)Royal Society Leverhulme Trust Senior Research Fellowship(SRF\R1\21000153).
文摘Plastic waste management has emerged as a critical environmental issue due to the exponential increase in plastic consumption worldwide.Polyethylene terephthalate(PET)is extensively used in the production of water bottles,which constitutes a significant fraction of the plastic waste.PET recycling is a challenging task due to the lack of efficient and cost-effective depolymerization methods.In this study,we developed a microwave(MW)catalytic depolymerization method for PET recycling using modified zinc oxide loaded with manganese oxide as a cocatalyst.The modified Mn_(3)O_(4)/ZnO catalyst presents high efficiency in depolymerizing PET into its monomers with only 0.4 wt% ratio of the catalyst to PET at 175℃ for 5 min,resulting in 100% conversion of PET and 88% selectivity toward bis-hydroxyethyl terephthalate monomers.It is believed that Mn_(3)O_(4)provides additional Lewis acid sites,promoting the dissociation of glycol from PET,and the MW irradiation plays a crucial role in rapidly heating the ethylene glycol and the catalyst,thereby accelerating the PET depolymerization process.In addition,the heterogeneous nature of the catalyst facilitates its easy separation from the reaction mixture for reuse,simplifying the catalyst recovery process and enabling costeffective and sustainable PET recycling.Thus,this study provides an innovative and sustainable solution for PET recycling,contributing toward the circular economy and mitigating the environmental impact of plastic waste.