The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the...The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.展开更多
基金supported by the National Natural Science Foundation of China(NO:40202019,90102017,40121303)National Basic Research Program of China(2004CB720202)China Postdoctoral Fund
文摘The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.