Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red so...Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH4+-N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.展开更多
文摘Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH4+-N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.