The study area is located in the entrance of Wadi Girshah in Ablah area, Assir terrain, southwestern Saudi Arabia. The present study aims to shed light on the field, mega- and microscopic description of the volcanicla...The study area is located in the entrance of Wadi Girshah in Ablah area, Assir terrain, southwestern Saudi Arabia. The present study aims to shed light on the field, mega- and microscopic description of the volcaniclastic red beds and the associated scoriaceous basalts of Wadi Al Roaian. It is based mainly up on the field works augmented by petrographic description. The present study revealed that, the succession of the upper part of Girshah Formation comprises three main horizons: 1) lower unit of epidotized and silicified basaltic and andesitic tuffs;2) middle unit of volcaniclastic red beds-scoriaceous basalts of successive cycles (each of these cycles begins by reddish tuffaceous mudstone and sandstone and is terminated by the calcite-bearing scoriaceous basalt). This unit indicated the deposition in lacustrine environments and the red iron oxyhydroxides minerals were formed either by the direct hematitization of the deposited tuffs or by the diagenetic hematitization of the green clays formed instead of the precursor tuffaceous materials;3) upper scoriaceous basalt unit composed from hematitized and calcitized basalt. The unit was formed by basic volcanic eruptions in subaerial condition which was predominated by the formation of calcium carbonate lakes associated with the progressive and subsequent calcitization of the Ca-plagioclase minerals of the basalt and the associated glassy tuffaceous material. The scoriaceous basalts of Wadi Al Roaian area represent subaerial basic volcanic eruption in continental situation and are associated with subsequent events of mineral alteration and formation of secondary minerals i.e. calcite, hematite and goethite.展开更多
Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength pr...Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength properties and water-weakening properties were investigated.In situ stress environment and mining-induced fractured damage zone after excavation were studied to reveal the instability mechanism.The results show that red shale contains swelling and loose clayey minerals as interstitial filling material,producing low shear strength of microstructure and making it vulnerable to water.Macroscopically,a U-shaped curve of uniaxial compressive strength(UCS)exists with the increase of the angle between macro weakness plane and the horizon.However,its tensile strength reduced monotonically with this angle.While immersed in water for72h,its UCS reduced by91.9%comparing to the natural state.Field sonic tests reveal that an asymmetrical geometrical profile of fractured damage zone of gateroad was identified due to geological bedding plane and detailed gateroad layout with regards to the direction of major principle stress.Therefore,red shale is a kind of engineering soft rock.For ground control in underground mining or similar applications,water inflow within several hours of excavation must strictly be prevented and energy adsorbing rock bolt is recommended,especially in large deformation part of gateroad.展开更多
文摘The study area is located in the entrance of Wadi Girshah in Ablah area, Assir terrain, southwestern Saudi Arabia. The present study aims to shed light on the field, mega- and microscopic description of the volcaniclastic red beds and the associated scoriaceous basalts of Wadi Al Roaian. It is based mainly up on the field works augmented by petrographic description. The present study revealed that, the succession of the upper part of Girshah Formation comprises three main horizons: 1) lower unit of epidotized and silicified basaltic and andesitic tuffs;2) middle unit of volcaniclastic red beds-scoriaceous basalts of successive cycles (each of these cycles begins by reddish tuffaceous mudstone and sandstone and is terminated by the calcite-bearing scoriaceous basalt). This unit indicated the deposition in lacustrine environments and the red iron oxyhydroxides minerals were formed either by the direct hematitization of the deposited tuffs or by the diagenetic hematitization of the green clays formed instead of the precursor tuffaceous materials;3) upper scoriaceous basalt unit composed from hematitized and calcitized basalt. The unit was formed by basic volcanic eruptions in subaerial condition which was predominated by the formation of calcium carbonate lakes associated with the progressive and subsequent calcitization of the Ca-plagioclase minerals of the basalt and the associated glassy tuffaceous material. The scoriaceous basalts of Wadi Al Roaian area represent subaerial basic volcanic eruption in continental situation and are associated with subsequent events of mineral alteration and formation of secondary minerals i.e. calcite, hematite and goethite.
基金Projects(51774058,51674047)supported by the National Natural Science Foundation of ChinaProjects(cstc2016jcyjA1861,cstc2018jcyjA3320)supported by Chongqing Basic Science and Cutting-edge Technology Special Projects,ChinaProject(2015M570607)supported by Postdoctoral Science Foundation of China
文摘Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength properties and water-weakening properties were investigated.In situ stress environment and mining-induced fractured damage zone after excavation were studied to reveal the instability mechanism.The results show that red shale contains swelling and loose clayey minerals as interstitial filling material,producing low shear strength of microstructure and making it vulnerable to water.Macroscopically,a U-shaped curve of uniaxial compressive strength(UCS)exists with the increase of the angle between macro weakness plane and the horizon.However,its tensile strength reduced monotonically with this angle.While immersed in water for72h,its UCS reduced by91.9%comparing to the natural state.Field sonic tests reveal that an asymmetrical geometrical profile of fractured damage zone of gateroad was identified due to geological bedding plane and detailed gateroad layout with regards to the direction of major principle stress.Therefore,red shale is a kind of engineering soft rock.For ground control in underground mining or similar applications,water inflow within several hours of excavation must strictly be prevented and energy adsorbing rock bolt is recommended,especially in large deformation part of gateroad.