Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man...Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.展开更多
Peach, an economically important model plant of the Rosaceae family, has been domesticated and cultivated in China for approximately5 000 years. The Hexi Corridor, an important corridor connecting east-central China a...Peach, an economically important model plant of the Rosaceae family, has been domesticated and cultivated in China for approximately5 000 years. The Hexi Corridor, an important corridor connecting east-central China and the Tarim Basin, is the starting point of the Silk Road that links China and the Eurasian region. As a globally distributed fruit tree, the spread of peach was accomplished through historical trade routes in the Hexi Corridor and the Tarim Basin. However, knowledge of peach genetic diversity in these regions remains limited. In this study,we examined the relationships and the spread history of domesticated peaches through sequencing and genomic analysis of 161 peach accessions collected from Northwest China, including 43 from the Hexi Corridor and 104 from the Tarim Basin. The results indicate that peach landraces in the Hexi Corridor and the Tarim Basin are derivatives of peaches from the east and south of China (ESC). Notably, the genetic diversity of accessions from both the Hexi Corridor and the Tarim Basin was lower than that of ESC accessions. Reduction of diversity (ROD) and linkage disequilibrium (LD) analyses detected a genetic bottleneck in peaches from these regions. Additionally, these peaches have undergone varying degrees of selection from natural environment. Moreover, genes responsive to biotic and abiotic stresses were under selection, which could be the result of the climate change of Northwest China after the Last Glacial Maximum (LGM). Our findings provide a better understanding of the genetic basis of peach migration in Northwest China. Furthermore, this study expands the available genomic data for peaches and provides critical information for future peach breeding programs.展开更多
Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation se...Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation sequencing to identify the H3K27me3 modifications and RNA sequencing of two peach cultivars with pronounced differences in chilling requirement were carried out,the results showed that genes associated with abscisic acid and gibberellic acid signal pathways play key roles in dormancy regulation.The results demonstrated that peach flower bud differentiation occurred continuously in both cultivars during chilling accumulation,which was correlated with the transcript abundance of key genes involved in phytohormone metabolism and flower bud development under adverse conditions.The more increased strength in high chillingrequirement cultivar along with the chilling accumulation at the genome-wide level.The function of the dormancy-associated MADS-box gene PpDAM6 was identified,which is involved in leaf bud break in peach and flower development in transgenic Nicotiana tabacum(NC89).In addition,PpDAM6 was positively regulated by PpCBF,and the genes of putative dormancy-related and associated with metabolic pathways were proposed.Taken together,these results constituted a theoretical basis for elucidating the regulation of peach bud dormancy transition.展开更多
[Objectives]To study the germplasm resources of excellent peach cultivars.[Methods]Five peach cultivars were introduced,in-cluding‘Jinxiu’peach,‘Jinxiang’peach,‘Chunxiao’peach,‘Hujingmilu’peach and‘018 nectar...[Objectives]To study the germplasm resources of excellent peach cultivars.[Methods]Five peach cultivars were introduced,in-cluding‘Jinxiu’peach,‘Jinxiang’peach,‘Chunxiao’peach,‘Hujingmilu’peach and‘018 nectarine’peach.Then,these five cultivars were used to study the biological characteristics of peach trees,namely,as phenology,fruit quality,heat resistance,cold resistance and other resistance.[Results]Five cultivars of peach plants grew fast and robust,among which‘018 nectarine’had very crisp fruit,‘Jinxiu’,‘Jinxiang’,‘Chunxiao’and‘Hujingmilu’had very sweet fruitꎻthe peach trees of these five cultivars have good water resistance,heat resist-ance and cold resistance.[Conclusions]The results of this study can not only provide a reference for the introduction of peach trees,but also provide a practical basis for the large-scale planting of peach trees.展开更多
[Objectives]This study was conducted to clarify the enrichment and paucity of trace elements in the soil environment of peach orchards in Zunyi City,and to provide reference for supplementary application of microeleme...[Objectives]This study was conducted to clarify the enrichment and paucity of trace elements in the soil environment of peach orchards in Zunyi City,and to provide reference for supplementary application of microelement fertilizers and high-quality peach production in peach orchards.[Methods]Taking the soil of three typical peach orchards(Taoli Renjia peach orchard,Pengrui peach orchard and Taohuadao peach orchard)in Shenxi Town,Honghuagang District,Zunyi City as the research object,the contents of trace elements in soil were analyzed through field sampling and indoor determination of trace elements.[Results]The effective contents of trace elements in the soil of peach orchard bases in the study area were at a medium level,and the soil of the peach orchards was rich in available Fe and Se.The contents of available Cu,Mo and Mn were relatively rich.The contents of available B were not high overall.The contents of available Zn were at a moderate to low level overall.The soil of Taoli Renjia peach orchard was relatively rich in trace elements.[Conclusions]The research results can provide a scientific basis for the production of high-quality crispy peaches in peach orchards.展开更多
Pantone has declared Pantone 13-1023Peach Fuzz as its Color of the Year for 2024.This soft peach tone reflects comforting warmth and represents a desire for unity,peace and personal well-being.The calming shade,a subl...Pantone has declared Pantone 13-1023Peach Fuzz as its Color of the Year for 2024.This soft peach tone reflects comforting warmth and represents a desire for unity,peace and personal well-being.The calming shade,a sublime blend of pink and orange,suggests fresh softness,signifying an environment that invites relaxation,reccovery and growth.The delicatehue of Pantone 13-1023 Peach Fuzz not only awakens our senses to the tactile and enveloping warmth of the color,but also influences our sense of peace and overall well-being.展开更多
Peach(Prunus persica)is an economically important fruit crop globally and an excellent material for genomic studies.While considerable progress has been made in unveiling trait-associated genes within cultivars and wi...Peach(Prunus persica)is an economically important fruit crop globally and an excellent material for genomic studies.While considerable progress has been made in unveiling trait-associated genes within cultivars and wild relatives,certain novel genes controlling valuable traits in peach landraces,such as the red-flowering gene,remained unclear.In this study,we sequenced and assembled the diploid genome of the red-flower landrace‘Yingzui’(abbreviated as‘RedY’).Multi-omics profiling of red petals of‘RedY’revealed the intensified red coloration associated with anthocyanins accumulation and concurrent decline in f lavonols.This phenomenon is likely attributed to a natural variant of Flavonol Synthase(FLS)harboring a 9-bp exonic insertion.Intriguingly,the homozygous allelic configurations of this FLS variant were only observed in red-flowered peaches.Furthermore,the 9-bp sequence variation tightly associated with pink/red petal color in genome-wide association studies(GWAS)of collected peach germplasm resources.Functional analyses of the FLS variant,purified from procaryotic expression system,demonstrated its diminished enzymatic activity in f lavonols biosynthesis,impeccably aligning with the cardinal trait of red flowers.Therefore,the natural FLS variant was proposed as the best candidate gene for red-f lowering trait in peach.The pioneering unveiling of the red-flowered peach genome,coupled with the identification of the candidate gene,expanded the knowledge boundaries of the genetic basis of peach traits and provided valuable insights for future peach breeding efforts.展开更多
As there is a strong interest in red-skinned pears,the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated;however,little is known about the molecular mechanism of anthocyan...As there is a strong interest in red-skinned pears,the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated;however,little is known about the molecular mechanism of anthocyanin regulation in red-fleshed pears due to limited availability of such germplasm,primarily found in European pears(Pyrus communis).In this study,based on transcriptomic analysis in red-fleshed and white-fleshed pears,we identified an ethylene response factor(ERF)from P.communis,PcERF5,of which expression level in fruit flesh was significantly correlated with anthocyanin content.We then verified the function of PcERF5 in regulating anthocyanin accumulation by genetic transformation in both pear skin and apple calli.PcERF5 regulated anthocyanin biosynthesis by different regulatory pathways.On the one hand,PcERF5 can activate the transcription of flavonoid biosynthetic genes(PcDFR,PcANS and PcUFGT)and two key transcription factors encoding genes PcMYB10 and PcMYB114.On the other hand,PcERF5 interacted with PcMYB10 to form the ERF5-MYB10 protein complex that enhanced the transcriptional activation of PcERF5 on its target genes.Our results suggested that PcERF5 functioned as a transcriptional activator in regulating anthocyanin biosynthesis,which provides new insights into the regulatory mechanism of anthocyanin biosynthesis.This new knowledge will provide guidance for molecular breeding of red-fleshed pear.展开更多
The MADS-box(DAM)gene PpDAM6,which is related to dormancy,plays a key role in bud endodormancy release,and the expression of PpDAM6 decreases during endodormancy release.However,the interaction network that governs it...The MADS-box(DAM)gene PpDAM6,which is related to dormancy,plays a key role in bud endodormancy release,and the expression of PpDAM6 decreases during endodormancy release.However,the interaction network that governs its regulation of the endodormancy release of flower buds in peach remains unclear.In this study,we used yeast two-hybrid(Y2H)assays to identify a mitogen-activated protein kinase,PpMAPK6,that interacts with PpDAM6 in a peach dormancy-associated SSHcDNA library.PpMAPK6 is primarily located in the nucleus,and Y2H and bimolecular fluorescence complementation(BiFC)assays verified that PpMAPK6 interacts with PpDAM6 by binding to the MADS-box domain of PpDAM6.Quantitative real-time PCR(qRT-PCR)analysis showed that the expression of PpMAPK6 was opposite that of PpDAM6 in the endodormancy release of three cultivars with different chilling requirements(Prunus persica‘Chunjie’,Prunus persica var.nectarina‘Zhongyou 5’,Prunus persica‘Qingzhou peach’).In addition,abscisic acid(ABA)inhibited the expression of PpMAPK6 and promoted the expression of PpDAM6 in flower buds.The results indicated that PpMAPK6 might phosphorylate PpDAM6 to accelerate its degradation by interacting with PpDAM6.The expression of PpMAPK6 increased with decreasing ABA content during endodormancy release in peach flower buds,which in turn decreased the expression of PpDAM6 and promoted endodormancy release.展开更多
Nitrosoglutathione(GSNO)andβ-cyclodextrin(β-CD)exhibit positive roles in regulating fruit quality.However,there are few reports about the effects of GSNO andβ-CD on enhancing storability and boosting nitric oxide(N...Nitrosoglutathione(GSNO)andβ-cyclodextrin(β-CD)exhibit positive roles in regulating fruit quality.However,there are few reports about the effects of GSNO andβ-CD on enhancing storability and boosting nitric oxide(NO),hydrogen sulfide(H2S),and phenylpropane metabolism in fruits during storage.“Xintaihong”peach were treated with 0.5,1.0,1.5mmol L−1 GSNO in 0.5%(w/v)β-CD solution(GSNO/β-CD).The effects of GSNO/β-CD on endogenous NO,H2S,and phenylpropane metabolism were investigated.Treatment with GSNO/β-CD increased the color difference of peach and inhibited the increase of respiratory intensity,weight loss,and relative conductivity.Treatment with 1.0 mmol L−1 GSNO/β-CD increased the nitric oxide synthase(NOS-like)activity and L-arginine content,thereby promoting the accumulation of endogenous NO.By improving the activities of L-cysteine desulfhydrylase(L-CD),O-acetylserine sulfur lyase(OAS-TL),serine acetyltransferase(SAT),GSNO/β-CD increased the content of endogenous H2S in peach.Treatment with GSNO/β-CD increased the activities of phenylalanine ammonia-lyase(PAL),4-coumarate-CoA ligase(4CL),and cinnamic acid-4-hydroxylase(C4H),promoted the increase of total phenols,flavonoids,and lignin in peach.These results indicated that GSNO/β-CD treatment better maintained the quality of peach by improving the metabolism of endogenous NO,H2S,and phenylpropane during storage.展开更多
Production of peaches(Prunus persica(L.)Batsch)for both local market and export is increasing each year in Egypt.Brown rot disease,caused by Monilinia laxa and Monilinia fructigena,is considered one of the most import...Production of peaches(Prunus persica(L.)Batsch)for both local market and export is increasing each year in Egypt.Brown rot disease,caused by Monilinia laxa and Monilinia fructigena,is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing.Antifungal activity of glycyrrhizic acid nanoparticles(GA-NPs)and glycyrrhizic acid(GA)at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies.In the in vitro studies,GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar(PDA)amended with 0.4 mmol/L GA-NPs.Micrographs of M.fructigena exposed to 0.4 mmol/LGA showed mycelial deformations,nodule formation,detachment of the cell wall,shrinkage and inhomogeneous cytoplasmic materials with large vacuoles.Mycelium of M.laxa exposed to 0.4 mmol/LGA-NPs resulted in thinner and distorted hyphae,nodule formation,cell wall thinning,and swellings.The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids(TSS).GA-NPs were more effective in decreasing decay incidence than their bulk material.The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019.Furthermore,0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95(M.laxa)and 88%(M.fructigena)in 2018 season and 96(M.laxa)and 85%(M.fructigena)in 2019 season.In conclusion,GA-NPs could enhance the resistance of peaches against brown rot caused by M.laxa and M.fructigena.展开更多
Peach aphid is a common pest and hard to detect.This study employs hyperspectral imaging technology to identify early damage in green cabbage caused by peach aphid.Through principal component transformation and multip...Peach aphid is a common pest and hard to detect.This study employs hyperspectral imaging technology to identify early damage in green cabbage caused by peach aphid.Through principal component transformation and multiple linear regression analysis,the correlation relation between spectral characteristics and infestation stage is analyzed.Then,four characteristic wavelength selection methods are compared and optimal characteristic wavelengths subset is determined to be input for modelling.One linear algorithm and two nonlinear modelling algorithms are compared.Finally,support vector machine(SVM)model based on the characteristic wavelengths selected by multi-cluster feature selection(MCFS)acquires the highest identification accuracy,which is 98.97%.These results indicate that hyperspectral imaging technology have the ability to identify early peach aphid infestation stages on green cabbages.展开更多
Combined application of organic fertilizer is an effective measure to improve the productivity and ecological effect of newly added soil.However,the effect of organic fertilizer application in newly added orchard soil...Combined application of organic fertilizer is an effective measure to improve the productivity and ecological effect of newly added soil.However,the effect of organic fertilizer application in newly added orchard soil is not clear.In this project,the soil of newly built peach orchard in the Longquan Mountain of Chengdu was applied with 45 t/hm 2 of organic fertilizer.After 9 months of planting 6 varieties of honey peach(Wanhujing,Baifeng,Zhongtao 13,Huangjinmitao 1,Zhongpan 101,Zhongpan 104),the locally well developed peach orchard was taken as the control.The physical and chemical properties of soil from four topography(top slope,middle slope,lower slope and flat land)of newly built peach orchard were analyzed,and the effect of organic fertilizer on soil was evaluated.The results showed that combined application of organic fertilizer had different effects on soils from orchards with different varieties of peach and from different terrain parts of the same peach variety.Specifically,it had the best effect on soil improvement in Baifeng(local variety),Zhongpan 101 and Zhongpan 104(introduced varieties).Meanwhile,the best effect of soil improvement was found on top slope.Cluster analysis divided newly built peach orchards,uncultivated soil,and locally well developed peach orchard into four groups,indicating that the selected amount of organic fertilizer application in this study has improved the soil of peach orchards to some extent,but it was still necessary to increase the application amount.It was better for 54 t/hm 2 amount of organic fertilization on the part of top and middle slope,and 60 t/hm 2 on the lower slope and flat land.The comprehensive ecological benefit assessment of organic fertilizer should be conducted based on long-term monitoring of peach orchard ecological environment,fruit tree growth,fruit yield and quality,which would provide scientific basis for peach orchard production and management.展开更多
棉花伏前桃、伏桃、早秋桃和晚秋桃(“四桃”)的时空分布不同,但目前“四桃”的纤维产量和品质差异及其对氮(N)肥与缩节胺(DPC)配施的响应鲜见报道。2015—2017年,在郑州市黄河滩区采用双因素裂区设计,以3个N肥用量为主区,即不施N肥(N0...棉花伏前桃、伏桃、早秋桃和晚秋桃(“四桃”)的时空分布不同,但目前“四桃”的纤维产量和品质差异及其对氮(N)肥与缩节胺(DPC)配施的响应鲜见报道。2015—2017年,在郑州市黄河滩区采用双因素裂区设计,以3个N肥用量为主区,即不施N肥(N0)、常量施N(N1)和过量施N(N2),用量分别为0、225和450 kg hm-2;以3个DPC用量为副区,即不喷施DPC(D0)、常量DPC(D1)和过量DPC(D2),用量分别为0、75和150 g hm-2。研究了N肥与DPC配施对棉花纤维产量及品质时间分布的影响。结果表明,(1)N1处理的“四桃”纤维产量比N0和N2处理分别增加36.79%和3.27%, N2处理减产不显著;D1处理比D0和D2处理分别增产17.53%和8.50%, D2处理减产达到显著水平;N1D1组合产量最高,其余组合减产1.15%~51.53%。N1D1组合的伏前桃、伏桃、早秋桃和晚秋桃产量分别占8.89%、45.35%、33.41%和12.36%,伏桃和早秋桃是产量主体,但早秋桃的成产强度大。随着施N量增加,早秋桃和晚秋桃的纤维产量占比增加,而随着DPC用量增加则表现相反。(2) N肥用量和DPC用量均对纤维长度、整齐度、比强度和马克隆值有显著影响,但对纤维伸长率影响达不到显著水平。N1处理和D1处理的纤维品质综合表现最优,但D0处理马克隆值最佳。N肥与DPC用量互作对“四桃”的纤维比强度和马克隆值有显著影响,其中, N1D1处理“四桃”的比强度和马克隆值均表现最优,而N2D2处理“四桃”的比强度和马克隆值表现最差。此外,过量施N和过量喷施DPC均会升高马克隆值。(3)“四桃”的纤维品质存在差异。伏前桃的纤维品质除马克隆值最优外,其纤维长度、整齐度和比强度最差;伏桃和早秋桃的纤维长度、整齐度和比强度最优,但马克隆值表现最差,伸长率居中;晚秋桃的伸长率最优,其余品质指标均居中。研究结果丰富了“四桃”产量和品质差异的相关理论,并为棉花合理施N和喷施DPC以及“四桃”纤维的合理利用提供了科学依据。展开更多
基金supported by the projects of China Agriculture Research System of MOF and MARA (Grant No.CARS-29-ZP-7)Outstanding Youth Science and Technology Fund of Henan Academy of Agricultural Sciences (Grant No.2022YQ08)。
文摘Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.
基金supported by the National Key Research and Development Program (Grant Nos2019YFD1000200,2021YFD1200200)Agricultural Science and Technology Innovation Program (Grant No.CAAS-ASTIP-2021-ZFRI-01)+1 种基金the Crop Germplasm Resources Conservation Project(Grant No.2016NWB041)the National Horticulture Germplasm Resources Center。
文摘Peach, an economically important model plant of the Rosaceae family, has been domesticated and cultivated in China for approximately5 000 years. The Hexi Corridor, an important corridor connecting east-central China and the Tarim Basin, is the starting point of the Silk Road that links China and the Eurasian region. As a globally distributed fruit tree, the spread of peach was accomplished through historical trade routes in the Hexi Corridor and the Tarim Basin. However, knowledge of peach genetic diversity in these regions remains limited. In this study,we examined the relationships and the spread history of domesticated peaches through sequencing and genomic analysis of 161 peach accessions collected from Northwest China, including 43 from the Hexi Corridor and 104 from the Tarim Basin. The results indicate that peach landraces in the Hexi Corridor and the Tarim Basin are derivatives of peaches from the east and south of China (ESC). Notably, the genetic diversity of accessions from both the Hexi Corridor and the Tarim Basin was lower than that of ESC accessions. Reduction of diversity (ROD) and linkage disequilibrium (LD) analyses detected a genetic bottleneck in peaches from these regions. Additionally, these peaches have undergone varying degrees of selection from natural environment. Moreover, genes responsive to biotic and abiotic stresses were under selection, which could be the result of the climate change of Northwest China after the Last Glacial Maximum (LGM). Our findings provide a better understanding of the genetic basis of peach migration in Northwest China. Furthermore, this study expands the available genomic data for peaches and provides critical information for future peach breeding programs.
基金supported by the National Natural Science Foundation of China(Grant No.32001996)Central Publicinterest Scientific Institution Basal Research Fund(Grant No.Y2022QC23)+2 种基金Agricultural Science and Technology Innovation Program(Grant No.CAAS-ASTIP-2021-ZFRI-01)the Crop Germplasm Resources Conservation Project(Grant No.2016NWB041)the Science and Technology Major Project of Yunnan(Gene mining and breeding of peach at highaltitude and low-latitude regions)。
文摘Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation sequencing to identify the H3K27me3 modifications and RNA sequencing of two peach cultivars with pronounced differences in chilling requirement were carried out,the results showed that genes associated with abscisic acid and gibberellic acid signal pathways play key roles in dormancy regulation.The results demonstrated that peach flower bud differentiation occurred continuously in both cultivars during chilling accumulation,which was correlated with the transcript abundance of key genes involved in phytohormone metabolism and flower bud development under adverse conditions.The more increased strength in high chillingrequirement cultivar along with the chilling accumulation at the genome-wide level.The function of the dormancy-associated MADS-box gene PpDAM6 was identified,which is involved in leaf bud break in peach and flower development in transgenic Nicotiana tabacum(NC89).In addition,PpDAM6 was positively regulated by PpCBF,and the genes of putative dormancy-related and associated with metabolic pathways were proposed.Taken together,these results constituted a theoretical basis for elucidating the regulation of peach bud dormancy transition.
文摘[Objectives]To study the germplasm resources of excellent peach cultivars.[Methods]Five peach cultivars were introduced,in-cluding‘Jinxiu’peach,‘Jinxiang’peach,‘Chunxiao’peach,‘Hujingmilu’peach and‘018 nectarine’peach.Then,these five cultivars were used to study the biological characteristics of peach trees,namely,as phenology,fruit quality,heat resistance,cold resistance and other resistance.[Results]Five cultivars of peach plants grew fast and robust,among which‘018 nectarine’had very crisp fruit,‘Jinxiu’,‘Jinxiang’,‘Chunxiao’and‘Hujingmilu’had very sweet fruitꎻthe peach trees of these five cultivars have good water resistance,heat resist-ance and cold resistance.[Conclusions]The results of this study can not only provide a reference for the introduction of peach trees,but also provide a practical basis for the large-scale planting of peach trees.
基金Supported by Zunyi City-School Joint Science and Technology R&D Fund (ZSKH HZ Z[2023]159)Natural Science Research Project of Guizhou Provincial Department of Education (QJJ[2022]067+3 种基金QJJ[2023]043)Guizhou Provincial Scientific Special Commissioner Innovation and Entrepreneurship Service Training Demonstration Base (HHG2023001)Zunyi Science and Technology Support Program (ZSKHZC NS[2023]15)Science and Technology Cooperation Project of Honghuagang District,Zunyi City (ZHKHSZ[2022]03)。
文摘[Objectives]This study was conducted to clarify the enrichment and paucity of trace elements in the soil environment of peach orchards in Zunyi City,and to provide reference for supplementary application of microelement fertilizers and high-quality peach production in peach orchards.[Methods]Taking the soil of three typical peach orchards(Taoli Renjia peach orchard,Pengrui peach orchard and Taohuadao peach orchard)in Shenxi Town,Honghuagang District,Zunyi City as the research object,the contents of trace elements in soil were analyzed through field sampling and indoor determination of trace elements.[Results]The effective contents of trace elements in the soil of peach orchard bases in the study area were at a medium level,and the soil of the peach orchards was rich in available Fe and Se.The contents of available Cu,Mo and Mn were relatively rich.The contents of available B were not high overall.The contents of available Zn were at a moderate to low level overall.The soil of Taoli Renjia peach orchard was relatively rich in trace elements.[Conclusions]The research results can provide a scientific basis for the production of high-quality crispy peaches in peach orchards.
文摘Pantone has declared Pantone 13-1023Peach Fuzz as its Color of the Year for 2024.This soft peach tone reflects comforting warmth and represents a desire for unity,peace and personal well-being.The calming shade,a sublime blend of pink and orange,suggests fresh softness,signifying an environment that invites relaxation,reccovery and growth.The delicatehue of Pantone 13-1023 Peach Fuzz not only awakens our senses to the tactile and enveloping warmth of the color,but also influences our sense of peace and overall well-being.
基金supported by the project fund(YDXM2023001 and CXTD2021009-2)from Fujian Academy of Agricultural Sciencesfunded by the grant(2022R1028009)from the Department of Science and Technology of Fujian Province.We are grateful to CNPGRN staffs,especially for Lirong Wang and Weichao Fang(Zhengzhou Fruit Research Institute,Chinese Academy of Agricultural Sciences)and Ruijuan Ma(Institute of Pomology,Jiangsu Academy of Agricultural Sciences)who provided the information of petal colors and valuable red-f lower peach materials.
文摘Peach(Prunus persica)is an economically important fruit crop globally and an excellent material for genomic studies.While considerable progress has been made in unveiling trait-associated genes within cultivars and wild relatives,certain novel genes controlling valuable traits in peach landraces,such as the red-flowering gene,remained unclear.In this study,we sequenced and assembled the diploid genome of the red-flower landrace‘Yingzui’(abbreviated as‘RedY’).Multi-omics profiling of red petals of‘RedY’revealed the intensified red coloration associated with anthocyanins accumulation and concurrent decline in f lavonols.This phenomenon is likely attributed to a natural variant of Flavonol Synthase(FLS)harboring a 9-bp exonic insertion.Intriguingly,the homozygous allelic configurations of this FLS variant were only observed in red-flowered peaches.Furthermore,the 9-bp sequence variation tightly associated with pink/red petal color in genome-wide association studies(GWAS)of collected peach germplasm resources.Functional analyses of the FLS variant,purified from procaryotic expression system,demonstrated its diminished enzymatic activity in f lavonols biosynthesis,impeccably aligning with the cardinal trait of red flowers.Therefore,the natural FLS variant was proposed as the best candidate gene for red-f lowering trait in peach.The pioneering unveiling of the red-flowered peach genome,coupled with the identification of the candidate gene,expanded the knowledge boundaries of the genetic basis of peach traits and provided valuable insights for future peach breeding efforts.
基金funded by the National Natural Science Foundation of China(31820103012)the earmarked fund for China Agriculture Research System(CARS-28)the earmarked fund for Jiangsu Agricultural Industry Technology System,China(JATS[2022]454).
文摘As there is a strong interest in red-skinned pears,the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated;however,little is known about the molecular mechanism of anthocyanin regulation in red-fleshed pears due to limited availability of such germplasm,primarily found in European pears(Pyrus communis).In this study,based on transcriptomic analysis in red-fleshed and white-fleshed pears,we identified an ethylene response factor(ERF)from P.communis,PcERF5,of which expression level in fruit flesh was significantly correlated with anthocyanin content.We then verified the function of PcERF5 in regulating anthocyanin accumulation by genetic transformation in both pear skin and apple calli.PcERF5 regulated anthocyanin biosynthesis by different regulatory pathways.On the one hand,PcERF5 can activate the transcription of flavonoid biosynthetic genes(PcDFR,PcANS and PcUFGT)and two key transcription factors encoding genes PcMYB10 and PcMYB114.On the other hand,PcERF5 interacted with PcMYB10 to form the ERF5-MYB10 protein complex that enhanced the transcriptional activation of PcERF5 on its target genes.Our results suggested that PcERF5 functioned as a transcriptional activator in regulating anthocyanin biosynthesis,which provides new insights into the regulatory mechanism of anthocyanin biosynthesis.This new knowledge will provide guidance for molecular breeding of red-fleshed pear.
基金supported by the National Key Research and Development Plan(2018YFD1000104)the National Natural Science Foundation of China(318720415)+1 种基金the Agricultural Improved Seed Project Grant of Shandong,China(2020LZGC007,2020LZGC00702)the Fruit Industry Technology System Project of Shandong,China(SDAIT-06-04).
文摘The MADS-box(DAM)gene PpDAM6,which is related to dormancy,plays a key role in bud endodormancy release,and the expression of PpDAM6 decreases during endodormancy release.However,the interaction network that governs its regulation of the endodormancy release of flower buds in peach remains unclear.In this study,we used yeast two-hybrid(Y2H)assays to identify a mitogen-activated protein kinase,PpMAPK6,that interacts with PpDAM6 in a peach dormancy-associated SSHcDNA library.PpMAPK6 is primarily located in the nucleus,and Y2H and bimolecular fluorescence complementation(BiFC)assays verified that PpMAPK6 interacts with PpDAM6 by binding to the MADS-box domain of PpDAM6.Quantitative real-time PCR(qRT-PCR)analysis showed that the expression of PpMAPK6 was opposite that of PpDAM6 in the endodormancy release of three cultivars with different chilling requirements(Prunus persica‘Chunjie’,Prunus persica var.nectarina‘Zhongyou 5’,Prunus persica‘Qingzhou peach’).In addition,abscisic acid(ABA)inhibited the expression of PpMAPK6 and promoted the expression of PpDAM6 in flower buds.The results indicated that PpMAPK6 might phosphorylate PpDAM6 to accelerate its degradation by interacting with PpDAM6.The expression of PpMAPK6 increased with decreasing ABA content during endodormancy release in peach flower buds,which in turn decreased the expression of PpDAM6 and promoted endodormancy release.
基金supported by the National Natural Science Foundation of China(32071808).
文摘Nitrosoglutathione(GSNO)andβ-cyclodextrin(β-CD)exhibit positive roles in regulating fruit quality.However,there are few reports about the effects of GSNO andβ-CD on enhancing storability and boosting nitric oxide(NO),hydrogen sulfide(H2S),and phenylpropane metabolism in fruits during storage.“Xintaihong”peach were treated with 0.5,1.0,1.5mmol L−1 GSNO in 0.5%(w/v)β-CD solution(GSNO/β-CD).The effects of GSNO/β-CD on endogenous NO,H2S,and phenylpropane metabolism were investigated.Treatment with GSNO/β-CD increased the color difference of peach and inhibited the increase of respiratory intensity,weight loss,and relative conductivity.Treatment with 1.0 mmol L−1 GSNO/β-CD increased the nitric oxide synthase(NOS-like)activity and L-arginine content,thereby promoting the accumulation of endogenous NO.By improving the activities of L-cysteine desulfhydrylase(L-CD),O-acetylserine sulfur lyase(OAS-TL),serine acetyltransferase(SAT),GSNO/β-CD increased the content of endogenous H2S in peach.Treatment with GSNO/β-CD increased the activities of phenylalanine ammonia-lyase(PAL),4-coumarate-CoA ligase(4CL),and cinnamic acid-4-hydroxylase(C4H),promoted the increase of total phenols,flavonoids,and lignin in peach.These results indicated that GSNO/β-CD treatment better maintained the quality of peach by improving the metabolism of endogenous NO,H2S,and phenylpropane during storage.
文摘Production of peaches(Prunus persica(L.)Batsch)for both local market and export is increasing each year in Egypt.Brown rot disease,caused by Monilinia laxa and Monilinia fructigena,is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing.Antifungal activity of glycyrrhizic acid nanoparticles(GA-NPs)and glycyrrhizic acid(GA)at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies.In the in vitro studies,GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar(PDA)amended with 0.4 mmol/L GA-NPs.Micrographs of M.fructigena exposed to 0.4 mmol/LGA showed mycelial deformations,nodule formation,detachment of the cell wall,shrinkage and inhomogeneous cytoplasmic materials with large vacuoles.Mycelium of M.laxa exposed to 0.4 mmol/LGA-NPs resulted in thinner and distorted hyphae,nodule formation,cell wall thinning,and swellings.The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids(TSS).GA-NPs were more effective in decreasing decay incidence than their bulk material.The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019.Furthermore,0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95(M.laxa)and 88%(M.fructigena)in 2018 season and 96(M.laxa)and 85%(M.fructigena)in 2019 season.In conclusion,GA-NPs could enhance the resistance of peaches against brown rot caused by M.laxa and M.fructigena.
基金supported by China National Key Research and Development Program(No.2016YFD0700304)Shandong Natural Science Foundation Youth Program(No.ZR2021QC216)Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Science(No.CXGC2023A34)。
文摘Peach aphid is a common pest and hard to detect.This study employs hyperspectral imaging technology to identify early damage in green cabbage caused by peach aphid.Through principal component transformation and multiple linear regression analysis,the correlation relation between spectral characteristics and infestation stage is analyzed.Then,four characteristic wavelength selection methods are compared and optimal characteristic wavelengths subset is determined to be input for modelling.One linear algorithm and two nonlinear modelling algorithms are compared.Finally,support vector machine(SVM)model based on the characteristic wavelengths selected by multi-cluster feature selection(MCFS)acquires the highest identification accuracy,which is 98.97%.These results indicate that hyperspectral imaging technology have the ability to identify early peach aphid infestation stages on green cabbages.
基金Supported by the Research Project of China Railway 23 rd Bureau Group Co.,Ltd.(LQST-03-GCB-2022-02)the National Natural Science Foundation of China(42277245).
文摘Combined application of organic fertilizer is an effective measure to improve the productivity and ecological effect of newly added soil.However,the effect of organic fertilizer application in newly added orchard soil is not clear.In this project,the soil of newly built peach orchard in the Longquan Mountain of Chengdu was applied with 45 t/hm 2 of organic fertilizer.After 9 months of planting 6 varieties of honey peach(Wanhujing,Baifeng,Zhongtao 13,Huangjinmitao 1,Zhongpan 101,Zhongpan 104),the locally well developed peach orchard was taken as the control.The physical and chemical properties of soil from four topography(top slope,middle slope,lower slope and flat land)of newly built peach orchard were analyzed,and the effect of organic fertilizer on soil was evaluated.The results showed that combined application of organic fertilizer had different effects on soils from orchards with different varieties of peach and from different terrain parts of the same peach variety.Specifically,it had the best effect on soil improvement in Baifeng(local variety),Zhongpan 101 and Zhongpan 104(introduced varieties).Meanwhile,the best effect of soil improvement was found on top slope.Cluster analysis divided newly built peach orchards,uncultivated soil,and locally well developed peach orchard into four groups,indicating that the selected amount of organic fertilizer application in this study has improved the soil of peach orchards to some extent,but it was still necessary to increase the application amount.It was better for 54 t/hm 2 amount of organic fertilization on the part of top and middle slope,and 60 t/hm 2 on the lower slope and flat land.The comprehensive ecological benefit assessment of organic fertilizer should be conducted based on long-term monitoring of peach orchard ecological environment,fruit tree growth,fruit yield and quality,which would provide scientific basis for peach orchard production and management.
文摘棉花伏前桃、伏桃、早秋桃和晚秋桃(“四桃”)的时空分布不同,但目前“四桃”的纤维产量和品质差异及其对氮(N)肥与缩节胺(DPC)配施的响应鲜见报道。2015—2017年,在郑州市黄河滩区采用双因素裂区设计,以3个N肥用量为主区,即不施N肥(N0)、常量施N(N1)和过量施N(N2),用量分别为0、225和450 kg hm-2;以3个DPC用量为副区,即不喷施DPC(D0)、常量DPC(D1)和过量DPC(D2),用量分别为0、75和150 g hm-2。研究了N肥与DPC配施对棉花纤维产量及品质时间分布的影响。结果表明,(1)N1处理的“四桃”纤维产量比N0和N2处理分别增加36.79%和3.27%, N2处理减产不显著;D1处理比D0和D2处理分别增产17.53%和8.50%, D2处理减产达到显著水平;N1D1组合产量最高,其余组合减产1.15%~51.53%。N1D1组合的伏前桃、伏桃、早秋桃和晚秋桃产量分别占8.89%、45.35%、33.41%和12.36%,伏桃和早秋桃是产量主体,但早秋桃的成产强度大。随着施N量增加,早秋桃和晚秋桃的纤维产量占比增加,而随着DPC用量增加则表现相反。(2) N肥用量和DPC用量均对纤维长度、整齐度、比强度和马克隆值有显著影响,但对纤维伸长率影响达不到显著水平。N1处理和D1处理的纤维品质综合表现最优,但D0处理马克隆值最佳。N肥与DPC用量互作对“四桃”的纤维比强度和马克隆值有显著影响,其中, N1D1处理“四桃”的比强度和马克隆值均表现最优,而N2D2处理“四桃”的比强度和马克隆值表现最差。此外,过量施N和过量喷施DPC均会升高马克隆值。(3)“四桃”的纤维品质存在差异。伏前桃的纤维品质除马克隆值最优外,其纤维长度、整齐度和比强度最差;伏桃和早秋桃的纤维长度、整齐度和比强度最优,但马克隆值表现最差,伸长率居中;晚秋桃的伸长率最优,其余品质指标均居中。研究结果丰富了“四桃”产量和品质差异的相关理论,并为棉花合理施N和喷施DPC以及“四桃”纤维的合理利用提供了科学依据。