2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this n...2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this new photo- polymer material fabrication is explained and the absorption spectra of the material are measured. This fabrication technique allows a deeper penetration into volume and larger interference irradiation area which is more than 1 cm2. The optical design, theoretical calculations and experimental results including diffraction patterns verifying the forma- tion of periodic structures are presented. Compared with other fabrication technologies using high-power lasers, this approach has greatly reduced the demand for laser apparatus. Therefore, it is much more accessible to most. laboratories and potentially usable in holographic fabrication of photonic crystals and devices in micro electro-mechanical systems (MEMS).展开更多
基金Projiect supported by the National Key Basic Research Special Fund of China (Grant No. 2004CB719805)the Ningbo Natural Science Foundation, China (Grant No. 2009A610011)
文摘2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this new photo- polymer material fabrication is explained and the absorption spectra of the material are measured. This fabrication technique allows a deeper penetration into volume and larger interference irradiation area which is more than 1 cm2. The optical design, theoretical calculations and experimental results including diffraction patterns verifying the forma- tion of periodic structures are presented. Compared with other fabrication technologies using high-power lasers, this approach has greatly reduced the demand for laser apparatus. Therefore, it is much more accessible to most. laboratories and potentially usable in holographic fabrication of photonic crystals and devices in micro electro-mechanical systems (MEMS).