The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers...The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers the high capability of black phosphorene(BP)with hydrogen and oxygen evolution reaction(HER/OER)bifunctionality.Through a facile in situ electro-exfoliation route,the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents.It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities.In 1.0 M KOH electrolyte,the optimized 1.5 wt%Nifunctionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm^(−2).Moreover,the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst,stably delivering the overall water splitting for 50 h at 20 mA cm^(−2).Theoretical calculations have revealed that Ni–P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively.This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting,and provides effective strategies for constructing metal-lightweighted economic electrocatalysts.展开更多
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)...Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.展开更多
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,bu...Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction.展开更多
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be...Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.展开更多
Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great cha...Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great challenge in both the preparation and catalytic mechanism.Herein,we proposed a novel and efficient Ar-plasma(P)-assisted strategy to construct heteroatom Mo-substituted and oxygen vacancies enriched hierarchical spinel Co_(3)O_(4)porous nanoneedle arrays in situ grown on carbon cloth(denoted P-Mo-Co_(3)O_(4)@CC)to improve the OER performance.Ar-plasma technology can efficiently generate vacancy sites at the surface of hydroxide,which induces the anchoring of Mo anion salts through electrostatic interaction,finally facilitating the substitution of Mo atoms and the formation of oxygen vacancies on the Co_(3)O_(4)surface.The P-Mo-Co_(3)O_(4)@CC affords a low overpotential of only 276 mV at 10 mA cm^(−2)for the OER,which is 58 mV superior to that of Mo-free Co_(3)O_(4)@CC and surpasses commercial RuO_(2)catalyst.The robust stability and satisfactory selectivity(nearly 100%Faradic efficiency)of P-Mo-Co_(3)O_(4)@CC for the OER are also demonstrated.Theoreti-cal studies demonstrate that Mo with variable valance states can efficiently regulates the atomic ratio of Co^(3+)/Co^(2+)and increases the number of oxygen vacancies,thereby inducing charge redistribution and tuning the d-band center of Co_(3)O_(4),which improve the adsorption energy of oxygen intermediates(e.g.,*OOH)on P-Mo-Co_(3)O_(4)@CC during OER.Furthermore,the two-electrode OER//HER electrolyzer equipped with P-Mo-Co_(3)O_(4)@CC as anode displays a low operation potential of 1.54 V to deliver a current density of 10 mA cm^(−2),and also exhibits good reversibility and anticurrent fluctuation ability under simulated real energy supply conditions,demonstrating the great potential of P-Mo-Co_(3)O_(4)@CC in water electrolysis.展开更多
Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode...Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply.展开更多
Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by usin...Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side.展开更多
The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeute...The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.展开更多
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi...The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.展开更多
Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transform...Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.展开更多
Redistribution of iron during directional solidification of metallurgical-grade silicon (MG-Si) was conducted at low growth rate. Concentrations of iron were examined by ICP-MS and figured in solid and liquid phases, ...Redistribution of iron during directional solidification of metallurgical-grade silicon (MG-Si) was conducted at low growth rate. Concentrations of iron were examined by ICP-MS and figured in solid and liquid phases, at grain boundary and in growth direction. Concentrations are significantly different between solid and liquid phases. The thickness of the solute boundary layer is about 4 mm verified by mass balance law, and the effective distribution coefficient is 2.98×10?4. Iron element easily segregates at grain boundary at low growth rate. In growth direction, concentrations are almost constant until 86% ingot height, and they do not meet the Scheil equation completely, which is caused by the low growth rate. The effect of convection on the redistribution of iron was discussed in detail. Especially, the “dead zone” of convection plays an important role in the iron redistribution.展开更多
During long term storage at 25℃ in the dark,a large number of cell content were transferred from the senescing scape to the developing cloves,and the transfer from the basal part of scape was earlier than that from t...During long term storage at 25℃ in the dark,a large number of cell content were transferred from the senescing scape to the developing cloves,and the transfer from the basal part of scape was earlier than that from the apical part in the excised garlic scape ( Allium sativum var Taichang).Levels of H 2O 2 decreased in the cloves and significantly increased up to 10 folds and then declined quickly in the scape.Levels of H 2O 2 were enhanced early in the basal part of scape.In the treatment of GA 3 at the cloves,levels of H 2O 2 were strongly enhanced in the cloves and inhibited in the scape,coinciding with the distinct inhibition of cell content tansfer.The results indicated that H 2O 2 may be involved in cell content redistribution and its regulation.3-Amino-1,2,4-triazole (AT) is a specific inhibitor of catalase.Effects of AT on cell content redistribution and levels of H 2O 2 were almost similar to those of GA 3,It further proved the above concept.According to the changes of H 2O 2 leves and activities of peroxidase and catalase in the cloves and in the scape,we suggest that the accumulation of H 2O 2 in the scape was transducted from the cloves,and the decline of H 2O 2 level in the scape with GA 3 or AT at the cloves was mainly through the inhibition of H 2O 2 synthesis in the cloves.展开更多
Efficient use of N in agricultural practice can increase yield, decrease production costs and reduce the risk of environmental pollution. Effects of N fertilizer application rates on grain yield and physiological N us...Efficient use of N in agricultural practice can increase yield, decrease production costs and reduce the risk of environmental pollution. Effects of N fertilizer application rates on grain yield and physiological N use efficiency (PE) in relation to the accumulation and redistribution of biomass and N in rice (Oryza sativa L.) cultivars were studied at two experimental farms of Nanjing Agricultural University, Nanjing, China in 2004. Three high N use efficiency (NUE) rice cultivars (Wuyunjing 7, Nanguang and 4007) and one low NUE rice cultivar (Elio) with similar growth patterns were studied under seven N rates (0, 60, 120, 180, 240, 300 and 360 kg ha -1 ). Grain yield increased with the N application rate and attained plateau at 180 kg N ha -1 for rice cultivars at each site. Increasing N rate decreased PE for biomass and grain yield. Grain yield and PE of Elio were about 20% and 18% lower than those of high NUE cultivars. Differences in biomass, N accumulation and N redistribution were observed at the post-heading stage among rice cultivars with differing NUEs. The less reproductive tillers of Elio resulted in less demand for C and N during grain filling, thus leading to lower PE of Elio compared with the high NUE rice cultivars.展开更多
The leaching and redistribution of nutrients in the surface layer of 4 types of red soils in SoutheastChina were studied with a lysimeter experiment under field conditions. Results showed that the leachingconcentrated...The leaching and redistribution of nutrients in the surface layer of 4 types of red soils in SoutheastChina were studied with a lysimeter experiment under field conditions. Results showed that the leachingconcentrated in the rainy season (from April to June). Generaily, the leaching of soil nutrients from thesurface layer of red soils was in the order of Ca > Mg > K > NO3-N. In fertilization treatment, the totalamount of soil nutrients leached out of the surface layer in a red soil derived from granite was the highest inall soils. The uptake by grass decreased the leaching of fertilizer ions in surface layer, particularly for NO3-N.Soil total N and exchangeable K, Ca and Mg in the surface layer decreased with leaching and grass uptakeduring the 2 years without new fertilization of urea, Ca(H2PO4)2, KCl, CaCO3 and MgCO3. Ca movedfrom the application layer (0~5 cm) of fertilizer and accumulated in the 10~30 cm depth in the soils studiedexcept that derived from Quaternary red clay. The deficiency of soil exchangeable K will become a seriousdegradation process facing the Southeast China.展开更多
The efficiency of EDTA, HNO3 and CaCl2 as extractants to remove Pb, Zn and Cu from tailing soils without varying soil pH was investigated with distributions of Pb, Zn and Cu being determined before and after extractio...The efficiency of EDTA, HNO3 and CaCl2 as extractants to remove Pb, Zn and Cu from tailing soils without varying soil pH was investigated with distributions of Pb, Zn and Cu being determined before and after extraction using the sequential extraction procedure of the optimized European Community Bureau of Reference (BCR). Results indicated that EDTA and HNO3 were both effective extracting agents.The extractability of extractants for Pb and Zn was in the order EDTA > HNO3 > CaCl2, while for Cu it was HNO3 > EDTA > CaCl2. After EDTA extraction, the proportion of Pb, Zn and Cu in the four fractions varied greatly, which was related to the strong extraction and complexation ability. Before and after extraction with HNO3 and CaCl2, the percentages of Pb, Zn and Cu in the reducible, oxidizable and residual fractions changed little compared to the acid-extractable fraction. The lability of metal in the soil and the kinds of extractants were the factors controlling the effects of metal extraction.展开更多
Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to ...Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to the drought tolerance of Tarnarix spp. In this study, data on soil volumetric moisture content (0), lateral root sap flow, and relevant climate variables were used to investigate the patterns, magnitude, and controlling factors of HR of soil water by roots of Tamarix ramosissima Ledeb. in an extremely arid land in Northwest China. Results showed evident diurnal fluctuations in 0 at the depths of 30 and 50 cm, indicating "hydraulic lift" (HL). 0 increased remarkably at 10 and 140 cm but decreased at 30 and 50 cm and slightly changed at 80 cm after rainfall, suggesting a possible "hydraulic descent" (HD). However, no direct evidence was observed in the negative flow of lateral roots, supporting HR (including HL and HD) of T. ramosissima. The HR pathway unlikely occurred via lateral roots; instead, HR possibly occurred through adventitious roots with a diameter of 2-5 mm and a length of 60-100 cm. HR at depths of 20-60 cm ranged from 0.01-1.77 mm/d with an average of 0.43 mm/d, which accounted for an average of 22% of the estimated seasonal total water depletion at 0-160 cm during the growing season. The climate factors, particularly vapor pressure deficit and soil water potential gradient, accounted for at least 33% and 45% of HR variations with depths and years, respectively. In summary, T. ramosissima can be added to the wide list of existing species involved in HR. High levels of HR may represent a considerable fraction of daily soil water depletion and substantially improve plant water status. HR could vary tremendously in terms of years and depths, and this variation could be attributed to climate factors and soil water potential gradient.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
AIM: To explore the effects of H pylori infection on gap-junctional intercellular communication (GJIC) and proliferation of gastric epithelial cells in vitro. METHODS: A human gastric epithelial cell line (SGC- 7...AIM: To explore the effects of H pylori infection on gap-junctional intercellular communication (GJIC) and proliferation of gastric epithelial cells in vitro. METHODS: A human gastric epithelial cell line (SGC- 7901) cultured on coverslips was exposed overnight to intact H pylori (CagA^+ or CagA^- strains) and sonicated extracts, respectively. GJIC between the cells was detected by fluorescence redistribution after photobleaching (FRAP) technique. Proliferation of SGC cells was determined by methylthiazolyl tetrazolium (MTT) assay. RESULTS: When compared with control in which cells were cultured with simple medium alone, both CagA^+ and CagA^- H pylori isolates could inhibit GJIC (CagA^+: F = 57.98, P 〈 0.01; CagA^-: F = 29.59, P 〈 0.01) and proliferation (CagA^+: F = 42.65, P 〈 0.01; CagA^-: F = 58.14, P 〈 0.01) of SGC-7901 cells. Compared with CagA^- strains, CagA^+ H pylori more significantly downregulated GJIC of gastric cells (intact Hpylori: t = 13.86, P 〈 0.01; sonicated extracts: t = 11.87, P 〈 0.01) and inhibited proliferation gastric cells to a lesser extent in vitro (intact H pylori: t = 3.06, P 〈 0.05; sonicated extracts: t = 3.94, P 〈 0.01). CONCLUSION: Compared with CagA^- H pylori strains, CagA^+ strains down-regulate GJIC of gastric epithelial cells more significantly and inhibit proliferation of gastric cells to a lesser extent in vitro. H pylori, especially CagA^+ strains, may play an important role in gastric carcinogenesis.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.52371236 and 21872109)Natural Science Foundation of Shaanxi Province(No.2020JQ-165)China Postdoctoral Science Foundation(No.2019M663698).
文摘The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers the high capability of black phosphorene(BP)with hydrogen and oxygen evolution reaction(HER/OER)bifunctionality.Through a facile in situ electro-exfoliation route,the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents.It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities.In 1.0 M KOH electrolyte,the optimized 1.5 wt%Nifunctionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm^(−2).Moreover,the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst,stably delivering the overall water splitting for 50 h at 20 mA cm^(−2).Theoretical calculations have revealed that Ni–P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively.This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting,and provides effective strategies for constructing metal-lightweighted economic electrocatalysts.
基金financially supported by the National Natural Science Foundation of China (52363028)the Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject (GUIKE AD23023004,GUIKE AD20297039)
文摘Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.
基金National Natural Science Foundation of China,Grant/Award Number:22102079Taishan Scholar Program of Shandong Province,China,Grant/Award Number:tsqn202211162Natural Science Foundation of Shandong Province of China,Grant/Award Numbers:ZR2021YQ10,ZR2022QB163。
文摘Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction.
基金supported by the National Natural Science Foundation of China (52302292, 52302058, 52302085)the China Postdoctoral Science Foundation (2021M702225)+1 种基金the Anhui Province University Natural Science Research Project (2023AH030093, 2023AH040301)the Startup Research Fund of Chaohu University (KYQD-2023005, KYQD-2023051)。
文摘Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875112,22109073Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20221321。
文摘Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great challenge in both the preparation and catalytic mechanism.Herein,we proposed a novel and efficient Ar-plasma(P)-assisted strategy to construct heteroatom Mo-substituted and oxygen vacancies enriched hierarchical spinel Co_(3)O_(4)porous nanoneedle arrays in situ grown on carbon cloth(denoted P-Mo-Co_(3)O_(4)@CC)to improve the OER performance.Ar-plasma technology can efficiently generate vacancy sites at the surface of hydroxide,which induces the anchoring of Mo anion salts through electrostatic interaction,finally facilitating the substitution of Mo atoms and the formation of oxygen vacancies on the Co_(3)O_(4)surface.The P-Mo-Co_(3)O_(4)@CC affords a low overpotential of only 276 mV at 10 mA cm^(−2)for the OER,which is 58 mV superior to that of Mo-free Co_(3)O_(4)@CC and surpasses commercial RuO_(2)catalyst.The robust stability and satisfactory selectivity(nearly 100%Faradic efficiency)of P-Mo-Co_(3)O_(4)@CC for the OER are also demonstrated.Theoreti-cal studies demonstrate that Mo with variable valance states can efficiently regulates the atomic ratio of Co^(3+)/Co^(2+)and increases the number of oxygen vacancies,thereby inducing charge redistribution and tuning the d-band center of Co_(3)O_(4),which improve the adsorption energy of oxygen intermediates(e.g.,*OOH)on P-Mo-Co_(3)O_(4)@CC during OER.Furthermore,the two-electrode OER//HER electrolyzer equipped with P-Mo-Co_(3)O_(4)@CC as anode displays a low operation potential of 1.54 V to deliver a current density of 10 mA cm^(−2),and also exhibits good reversibility and anticurrent fluctuation ability under simulated real energy supply conditions,demonstrating the great potential of P-Mo-Co_(3)O_(4)@CC in water electrolysis.
基金support of this research by National Natural Science Foundation of China(52172110)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(ZDBS-LY-SLH029)+1 种基金the“Scientific and Technical Innovation Action Plan”Hong Kong,Macao and Taiwan Science&Technology Cooperation Project of Shanghai Science and Technology Committee(21520760500)BL14W1 beamline of Shanghai Synchrotron Radiation Facility(SSRF).
文摘Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side.
基金Project (U1134101) supported by the Mutual Foundation of Basic Research of High Speed Railway,ChinaProjects (ZR2009FL003,ZR2010EL011,ZR2011EMM003) supported by the Natural Science Foundation of Shandong Province,China
文摘The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.
基金Project (10964004) supported by the National Natural Science Foundation of ChinaProject (20070731001) supported by Research Fund for the Doctoral Program of ChinaProject (096RJZA104) supported by the Natural Science Foundation of Gansu Province,China
文摘The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.
基金Project(41171361)supported by the National Natural Science Foundation of China
文摘Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.
基金Projects(51334004,51204143)supported by the National Natural Science Foundation of ChinaProject(2006L2003)supported by the Scientific Technological Innovation Platform of Fujian Province,China
文摘Redistribution of iron during directional solidification of metallurgical-grade silicon (MG-Si) was conducted at low growth rate. Concentrations of iron were examined by ICP-MS and figured in solid and liquid phases, at grain boundary and in growth direction. Concentrations are significantly different between solid and liquid phases. The thickness of the solute boundary layer is about 4 mm verified by mass balance law, and the effective distribution coefficient is 2.98×10?4. Iron element easily segregates at grain boundary at low growth rate. In growth direction, concentrations are almost constant until 86% ingot height, and they do not meet the Scheil equation completely, which is caused by the low growth rate. The effect of convection on the redistribution of iron was discussed in detail. Especially, the “dead zone” of convection plays an important role in the iron redistribution.
文摘During long term storage at 25℃ in the dark,a large number of cell content were transferred from the senescing scape to the developing cloves,and the transfer from the basal part of scape was earlier than that from the apical part in the excised garlic scape ( Allium sativum var Taichang).Levels of H 2O 2 decreased in the cloves and significantly increased up to 10 folds and then declined quickly in the scape.Levels of H 2O 2 were enhanced early in the basal part of scape.In the treatment of GA 3 at the cloves,levels of H 2O 2 were strongly enhanced in the cloves and inhibited in the scape,coinciding with the distinct inhibition of cell content tansfer.The results indicated that H 2O 2 may be involved in cell content redistribution and its regulation.3-Amino-1,2,4-triazole (AT) is a specific inhibitor of catalase.Effects of AT on cell content redistribution and levels of H 2O 2 were almost similar to those of GA 3,It further proved the above concept.According to the changes of H 2O 2 leves and activities of peroxidase and catalase in the cloves and in the scape,we suggest that the accumulation of H 2O 2 in the scape was transducted from the cloves,and the decline of H 2O 2 level in the scape with GA 3 or AT at the cloves was mainly through the inhibition of H 2O 2 synthesis in the cloves.
基金Project supported by the National Natural Science Foundation of China (Nos. 30771290 and 30671234)
文摘Efficient use of N in agricultural practice can increase yield, decrease production costs and reduce the risk of environmental pollution. Effects of N fertilizer application rates on grain yield and physiological N use efficiency (PE) in relation to the accumulation and redistribution of biomass and N in rice (Oryza sativa L.) cultivars were studied at two experimental farms of Nanjing Agricultural University, Nanjing, China in 2004. Three high N use efficiency (NUE) rice cultivars (Wuyunjing 7, Nanguang and 4007) and one low NUE rice cultivar (Elio) with similar growth patterns were studied under seven N rates (0, 60, 120, 180, 240, 300 and 360 kg ha -1 ). Grain yield increased with the N application rate and attained plateau at 180 kg N ha -1 for rice cultivars at each site. Increasing N rate decreased PE for biomass and grain yield. Grain yield and PE of Elio were about 20% and 18% lower than those of high NUE cultivars. Differences in biomass, N accumulation and N redistribution were observed at the post-heading stage among rice cultivars with differing NUEs. The less reproductive tillers of Elio resulted in less demand for C and N during grain filling, thus leading to lower PE of Elio compared with the high NUE rice cultivars.
文摘The leaching and redistribution of nutrients in the surface layer of 4 types of red soils in SoutheastChina were studied with a lysimeter experiment under field conditions. Results showed that the leachingconcentrated in the rainy season (from April to June). Generaily, the leaching of soil nutrients from thesurface layer of red soils was in the order of Ca > Mg > K > NO3-N. In fertilization treatment, the totalamount of soil nutrients leached out of the surface layer in a red soil derived from granite was the highest inall soils. The uptake by grass decreased the leaching of fertilizer ions in surface layer, particularly for NO3-N.Soil total N and exchangeable K, Ca and Mg in the surface layer decreased with leaching and grass uptakeduring the 2 years without new fertilization of urea, Ca(H2PO4)2, KCl, CaCO3 and MgCO3. Ca movedfrom the application layer (0~5 cm) of fertilizer and accumulated in the 10~30 cm depth in the soils studiedexcept that derived from Quaternary red clay. The deficiency of soil exchangeable K will become a seriousdegradation process facing the Southeast China.
基金Project supported by the National High Technology Research and Development Program (863 Program) of China(No. 2001AA644020)the Natural Science Foundation of Hunan Province (No. 04JJ3013)
文摘The efficiency of EDTA, HNO3 and CaCl2 as extractants to remove Pb, Zn and Cu from tailing soils without varying soil pH was investigated with distributions of Pb, Zn and Cu being determined before and after extraction using the sequential extraction procedure of the optimized European Community Bureau of Reference (BCR). Results indicated that EDTA and HNO3 were both effective extracting agents.The extractability of extractants for Pb and Zn was in the order EDTA > HNO3 > CaCl2, while for Cu it was HNO3 > EDTA > CaCl2. After EDTA extraction, the proportion of Pb, Zn and Cu in the four fractions varied greatly, which was related to the strong extraction and complexation ability. Before and after extraction with HNO3 and CaCl2, the percentages of Pb, Zn and Cu in the reducible, oxidizable and residual fractions changed little compared to the acid-extractable fraction. The lability of metal in the soil and the kinds of extractants were the factors controlling the effects of metal extraction.
基金supported by the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05)the National Natural Science Foundation of China (91025024)the Western Light Project of the Chinese Academy of Sciences
文摘Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to the drought tolerance of Tarnarix spp. In this study, data on soil volumetric moisture content (0), lateral root sap flow, and relevant climate variables were used to investigate the patterns, magnitude, and controlling factors of HR of soil water by roots of Tamarix ramosissima Ledeb. in an extremely arid land in Northwest China. Results showed evident diurnal fluctuations in 0 at the depths of 30 and 50 cm, indicating "hydraulic lift" (HL). 0 increased remarkably at 10 and 140 cm but decreased at 30 and 50 cm and slightly changed at 80 cm after rainfall, suggesting a possible "hydraulic descent" (HD). However, no direct evidence was observed in the negative flow of lateral roots, supporting HR (including HL and HD) of T. ramosissima. The HR pathway unlikely occurred via lateral roots; instead, HR possibly occurred through adventitious roots with a diameter of 2-5 mm and a length of 60-100 cm. HR at depths of 20-60 cm ranged from 0.01-1.77 mm/d with an average of 0.43 mm/d, which accounted for an average of 22% of the estimated seasonal total water depletion at 0-160 cm during the growing season. The climate factors, particularly vapor pressure deficit and soil water potential gradient, accounted for at least 33% and 45% of HR variations with depths and years, respectively. In summary, T. ramosissima can be added to the wide list of existing species involved in HR. High levels of HR may represent a considerable fraction of daily soil water depletion and substantially improve plant water status. HR could vary tremendously in terms of years and depths, and this variation could be attributed to climate factors and soil water potential gradient.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金Supported by Natural Science Fund of Zhejiang Province,No.302023
文摘AIM: To explore the effects of H pylori infection on gap-junctional intercellular communication (GJIC) and proliferation of gastric epithelial cells in vitro. METHODS: A human gastric epithelial cell line (SGC- 7901) cultured on coverslips was exposed overnight to intact H pylori (CagA^+ or CagA^- strains) and sonicated extracts, respectively. GJIC between the cells was detected by fluorescence redistribution after photobleaching (FRAP) technique. Proliferation of SGC cells was determined by methylthiazolyl tetrazolium (MTT) assay. RESULTS: When compared with control in which cells were cultured with simple medium alone, both CagA^+ and CagA^- H pylori isolates could inhibit GJIC (CagA^+: F = 57.98, P 〈 0.01; CagA^-: F = 29.59, P 〈 0.01) and proliferation (CagA^+: F = 42.65, P 〈 0.01; CagA^-: F = 58.14, P 〈 0.01) of SGC-7901 cells. Compared with CagA^- strains, CagA^+ H pylori more significantly downregulated GJIC of gastric cells (intact Hpylori: t = 13.86, P 〈 0.01; sonicated extracts: t = 11.87, P 〈 0.01) and inhibited proliferation gastric cells to a lesser extent in vitro (intact H pylori: t = 3.06, P 〈 0.05; sonicated extracts: t = 3.94, P 〈 0.01). CONCLUSION: Compared with CagA^- H pylori strains, CagA^+ strains down-regulate GJIC of gastric epithelial cells more significantly and inhibit proliferation of gastric cells to a lesser extent in vitro. H pylori, especially CagA^+ strains, may play an important role in gastric carcinogenesis.