The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the...The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the complex has been stUdied from the TG-DTGcurves by means of the Achar et al. and Coats-Redfern methods,the most probab1e kinetic equation canbe expressed as dofdtrAe -E / RT * l /(2Q).The corresponding kinetic compensation effect expressions arefound to be lnuA=0. 1794E+0. 1689.The non-isothermal thermal decomposition process of the complex isone-dimensional diffusion.But electrochemical studies of the complex(Cu2L'2)from cyclic voltamrnetriccurves by means of powder microelectrodes technique'',shows one two-electron irreversible process.展开更多
Nanoparticles offer unique features such as a larger surface area and enhanced electrochemical performance compared to their contemporary matters. These properties make them suitable to be considered in bridging the l...Nanoparticles offer unique features such as a larger surface area and enhanced electrochemical performance compared to their contemporary matters. These properties make them suitable to be considered in bridging the lacunae associated with the use of bare electrodes in electrochemical sensors. Nanomaterials enhance the redox reversibility on the electrodes’ surfaces, hence, improving the reproducibility, sensitivity, and limit of detection of the electrodes/sensors. Their methods of synthesis (top-to-bottom and bottom-to-to-top) are tailored toward manipulating their sizes, shapes, and preventing their agglomeration. This review paper provides a synopsis on research done in synthesizing nanoparticles, modifying electrodes, and pinpointing the improved performances of the modified electrodes via known characteristic techniques, namely: cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. In addition, a perspective is given in terms of increasing the lifespan of the working electrodes and the need for non-faradaic sensors.展开更多
Two asymmetric porphyrins, 5-(4-chloromethylphenyl)-10, 15, 20-triphenyl porphyrin and 5-(4-formylphenyl)-10, 15, 20-triphenyl porphyrin, were successfully prepared by the symmetric meso-tetraphenyl porphyrin and rela...Two asymmetric porphyrins, 5-(4-chloromethylphenyl)-10, 15, 20-triphenyl porphyrin and 5-(4-formylphenyl)-10, 15, 20-triphenyl porphyrin, were successfully prepared by the symmetric meso-tetraphenyl porphyrin and relative molecular configurations and properties were characterized by spectral determinations. This work presented an example for synthesis of asymmetric porphyrin derivatives from the symmetric porphyrin. Both asymmetric porphyrins are reactive in molecular assembly, the concerned reactions including alkylation with Grignard reagents, etherification with alcohols, aldol condensation and Mannich reaction for modification and enhancing their functionality. In this work, the reaction conditions were improved, synthetic strategy and route were confirmed.展开更多
文摘The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the complex has been stUdied from the TG-DTGcurves by means of the Achar et al. and Coats-Redfern methods,the most probab1e kinetic equation canbe expressed as dofdtrAe -E / RT * l /(2Q).The corresponding kinetic compensation effect expressions arefound to be lnuA=0. 1794E+0. 1689.The non-isothermal thermal decomposition process of the complex isone-dimensional diffusion.But electrochemical studies of the complex(Cu2L'2)from cyclic voltamrnetriccurves by means of powder microelectrodes technique'',shows one two-electron irreversible process.
文摘Nanoparticles offer unique features such as a larger surface area and enhanced electrochemical performance compared to their contemporary matters. These properties make them suitable to be considered in bridging the lacunae associated with the use of bare electrodes in electrochemical sensors. Nanomaterials enhance the redox reversibility on the electrodes’ surfaces, hence, improving the reproducibility, sensitivity, and limit of detection of the electrodes/sensors. Their methods of synthesis (top-to-bottom and bottom-to-to-top) are tailored toward manipulating their sizes, shapes, and preventing their agglomeration. This review paper provides a synopsis on research done in synthesizing nanoparticles, modifying electrodes, and pinpointing the improved performances of the modified electrodes via known characteristic techniques, namely: cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. In addition, a perspective is given in terms of increasing the lifespan of the working electrodes and the need for non-faradaic sensors.
文摘Two asymmetric porphyrins, 5-(4-chloromethylphenyl)-10, 15, 20-triphenyl porphyrin and 5-(4-formylphenyl)-10, 15, 20-triphenyl porphyrin, were successfully prepared by the symmetric meso-tetraphenyl porphyrin and relative molecular configurations and properties were characterized by spectral determinations. This work presented an example for synthesis of asymmetric porphyrin derivatives from the symmetric porphyrin. Both asymmetric porphyrins are reactive in molecular assembly, the concerned reactions including alkylation with Grignard reagents, etherification with alcohols, aldol condensation and Mannich reaction for modification and enhancing their functionality. In this work, the reaction conditions were improved, synthetic strategy and route were confirmed.