This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively...This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.展开更多
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ...Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure.展开更多
Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90℃ to 20℃. Charpy impact tests show that the duc...Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90℃ to 20℃. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60℃. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field (Hc) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of InHc versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.展开更多
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc...The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.展开更多
In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding ...In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.展开更多
Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and...Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.展开更多
Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain...Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS.展开更多
With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear ...With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test.展开更多
基金the National Key Research and Development Program of China(No.2016YFB 0300600)the National Natural Science Foundation of China(NSFC)(No.51922026)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.N2002013,N2002005,N2007011)the 111 Project(No.B20029).
文摘This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.
文摘Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure.
文摘Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90℃ to 20℃. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60℃. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field (Hc) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of InHc versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)+1 种基金the National Key Research and Development Plan of China(No.2018YFE0307101)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSC-CIP009)。
文摘The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51325401 and U1660201)the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB119001)
文摘In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.
基金supported by the China Nuclear Energy Development Program (No. H6603100)
文摘Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.
文摘Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS.
基金The research is supported by“National Natural Science Foundation of China”under Grant No.61572526thanks to Mr.He from the material radiation effect team of the China Institute of Atomic Energy.With the help and guidance of Mr.He and Mr.Deng,the experiment was successfully conducted,and the results were greatly improved,which enhanced the structure of this article.Thanks to the editor for giving detailed comments,the quality of the article can be improved.
文摘With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test.