Aim To study a method realizing noise control for a physical model of progressive wave in a duct. Methods A mathematical model was constructed and a transfer function of the adaptive system for noise control was als...Aim To study a method realizing noise control for a physical model of progressive wave in a duct. Methods A mathematical model was constructed and a transfer function of the adaptive system for noise control was also worked out; moreover, the effects of some algorithms such as RLS,LMS and LSL on noise control were analyzed and compared. Results Without the feedback of sound, the mean noise reduce value(MNRV) of 27 5 dB for broadband noise from 0 to 500?Hz in frequency were achieved. When acoustic feedback took place and an air stream loudspeaker was used, the MNRV was only about 4 9?dB. But if the loudspeaker had a plain frequency feature, MNRV was improved by 10 2?dB. Conclusion The technique is applied to ruducing the noise from engines' exhausted gas pipes. It is, in principle, used for noise cancelling in a closed three dimensional space.展开更多
文摘Aim To study a method realizing noise control for a physical model of progressive wave in a duct. Methods A mathematical model was constructed and a transfer function of the adaptive system for noise control was also worked out; moreover, the effects of some algorithms such as RLS,LMS and LSL on noise control were analyzed and compared. Results Without the feedback of sound, the mean noise reduce value(MNRV) of 27 5 dB for broadband noise from 0 to 500?Hz in frequency were achieved. When acoustic feedback took place and an air stream loudspeaker was used, the MNRV was only about 4 9?dB. But if the loudspeaker had a plain frequency feature, MNRV was improved by 10 2?dB. Conclusion The technique is applied to ruducing the noise from engines' exhausted gas pipes. It is, in principle, used for noise cancelling in a closed three dimensional space.