In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First...For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.展开更多
To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to...To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.展开更多
针对无标定分拣并联机器人需获取精确图像雅可比矩阵的问题,同时为克服图像检测误差、建模误差及外部干扰对无标定视觉伺服系统的影响,提出一种基于扩张状态观测器(extended state observer,ESO)的分拣并联机器人无标定视觉伺服自适应...针对无标定分拣并联机器人需获取精确图像雅可比矩阵的问题,同时为克服图像检测误差、建模误差及外部干扰对无标定视觉伺服系统的影响,提出一种基于扩张状态观测器(extended state observer,ESO)的分拣并联机器人无标定视觉伺服自适应滑模控制方法。通过将表征机器人图像空间与任务空间映射关系的图像雅可比矩阵与系统不确定项集总到同一通道的状态方程,引入ESO对分拣并联机器人视觉伺服系统的集总不确定性进行在线估计,设计一种基于扩张状态观测器的自适应积分滑模控制器,并通过设计自适应律动态调整滑模控制切换增益,以提高视觉伺服系统精度,同时达到抑制滑模控制抖振的效果。采用Lyapunov稳定性理论证明该控制方法的稳定性,最后通过仿真实验验证了所提出视觉伺服自适应滑模控制方法的可行性和有效性。展开更多
The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key...The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.展开更多
In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of activ...In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane,and compared with other relevant active disturbance rejection control(ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.展开更多
相比燃油拖拉机,电动拖拉机具有节能高效、绿色清洁的优点。分布式驱动电动拖拉机结构简单、控制维度多,能进一步提高电动拖拉机的工作效率和作业精度。但是电机检测转速噪声导致轮毂电机速度波动严重,复杂路面及多种作业工况下进一步...相比燃油拖拉机,电动拖拉机具有节能高效、绿色清洁的优点。分布式驱动电动拖拉机结构简单、控制维度多,能进一步提高电动拖拉机的工作效率和作业精度。但是电机检测转速噪声导致轮毂电机速度波动严重,复杂路面及多种作业工况下进一步加剧了上述问题,严重降低了拖拉机的作业质量。针对上述问题,该研究提出一种基于sigmoid滤波器的线性自抗扰控制(linear active disturbance rejection control,LADRC)以提高轮毂电机的转速稳定性和抗扰动能力。该控制策略在传统LADRC的基础上引入sigmoid滤波器至扩张状态观测器(extended state observer,ESO),根据输入噪声信号误差变化改变滤波器带宽,以抑制观测误差中的中高频干扰信号,同时避免滤波器积分环节对轮毂电机速度跟踪快速性的影响,具有较快的收敛性。搭建试验平台对所提出控制策略进行试验验证,结果表明:与传统LADRC策略相比,本文所提控制策略在变速和变载工况下的转速脉动分别减小了32%和41.67%,iq电流脉动分别减小了6.25%和4.17%,可在快速、准确跟踪给定转速的同时,大幅提高轮毂电机驱动系统的噪声抑制性能,为复杂环境下电动拖拉机高精度作业提供技术参考。展开更多
The extended state observer (ESO) is a novel observer for a class of uncertain systems. Since ESO adopts the continuous non-smooth structure, the classical observer design theory is hard to use for ESO analysis. In th...The extended state observer (ESO) is a novel observer for a class of uncertain systems. Since ESO adopts the continuous non-smooth structure, the classical observer design theory is hard to use for ESO analysis. In this note, the self-stable region (SSR) approach, which is a nonlinear synthesis method for nonlinear uncertain systems, will be used for ESO design and its stability analysis. The advantages of the non-smooth structure in ESO for improving the convergence properties and the estimation precision will be shown.展开更多
为了提高伺服电机系统的动态响应速度、抗干扰能力,解决输入饱和的问题,课题组基于扩张状态观测器(extended state observer,ESO)和抗饱和输入(anti-saturation input,ASI)辅助系统设计了伺服电机的运动控制方案。首先,建立了伺服电机...为了提高伺服电机系统的动态响应速度、抗干扰能力,解决输入饱和的问题,课题组基于扩张状态观测器(extended state observer,ESO)和抗饱和输入(anti-saturation input,ASI)辅助系统设计了伺服电机的运动控制方案。首先,建立了伺服电机的数学模型,将系统阻尼和系统不确定性归为扰动,将扰动设为系统的扩张状态;然后在等效反步滑模控制(backstepping sliding mode control,BSMC)的基础上,引入了ASI辅助系统和ESO,解决输入饱和问题,并抑制内、外干扰;采用双曲正切饱和函数替换符号函数以减小滑模控制的抖振;通过李雅普诺夫稳定性方法检验所提出控制器的稳定性。最后,将基于ESO和ASI的等效反步滑模控制与比例积分微分(proportional integral differential,PID)控制、滑模控制(sliding mode control,SMC)进行仿真对比。结果表明:相较于传统PID和SMC控制器,课题组所设计的控制器可以实现伺服电机的无超调快速响应,解决了输入饱和问题,并具有较好的抗干扰能力和减小输入冲击的作用。展开更多
针对直流配电网中母线电压控制问题,在双向AC/DC变换器传统双闭环控制器的基础上,设计一种基于扩张状态观测器(extended state observer,ESO)和终端滑模的非线性鲁棒电流前馈控制器,在不需要增加额外电压/电流传感器的情况下实现对系...针对直流配电网中母线电压控制问题,在双向AC/DC变换器传统双闭环控制器的基础上,设计一种基于扩张状态观测器(extended state observer,ESO)和终端滑模的非线性鲁棒电流前馈控制器,在不需要增加额外电压/电流传感器的情况下实现对系统内扰动的快速跟踪,有利于直流配电网中分布式电源与负荷的扩展和即插即用。传统电流前馈控制需要多个电流传感器采集负载电流信息,利用ESO与终端滑模控制理论将电流前馈控制系统转变为以直流母线电压为输入信号的非线性鲁棒电流前馈控制器,有效避免额外传感器的加入,减少装置费用,并且ESO可对系统各状态以及系统模型的不确定性和外部扰动进行实时跟踪,实现对系统中母线电压波动的快速抑制。软件数值仿真结果表明,该控制器表现出良好的控制效果和鲁棒性,对于直流母线电压波动具有很好的稳定效果。展开更多
针对欠驱动四旋翼无人飞行器的系统特性,为解决传统四旋翼飞行控制方法中存在的弱点,如系统状态变量间相互有较大耦合、控制效果易受建模误差的影响及抵御外界干扰能力较弱等弱点,设计一种基于扩张状态观测器(extended state observer,E...针对欠驱动四旋翼无人飞行器的系统特性,为解决传统四旋翼飞行控制方法中存在的弱点,如系统状态变量间相互有较大耦合、控制效果易受建模误差的影响及抵御外界干扰能力较弱等弱点,设计一种基于扩张状态观测器(extended state observer,ESO)的轨迹跟踪算法,由ESO实现对系统复合干扰的估计,并在控制律中对复合干扰进行实时补偿。由于ESO只需要测量系统输出即可实现对复合干扰的精确估计,因此在实际系统中易于实现,为验证所提算法,进行两种不同情况下的仿真研究,分别为矩形轨迹跟踪和圆形轨迹跟踪,仿真结果验证了所提算法的可行性。展开更多
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the Chinese Aviation Science Fund(20160757001)the National Natural Science Foundation of China(10577012)。
文摘For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.
基金supported by the National Natural Science Foundation of China(No.52005037).
文摘To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.
文摘针对无标定分拣并联机器人需获取精确图像雅可比矩阵的问题,同时为克服图像检测误差、建模误差及外部干扰对无标定视觉伺服系统的影响,提出一种基于扩张状态观测器(extended state observer,ESO)的分拣并联机器人无标定视觉伺服自适应滑模控制方法。通过将表征机器人图像空间与任务空间映射关系的图像雅可比矩阵与系统不确定项集总到同一通道的状态方程,引入ESO对分拣并联机器人视觉伺服系统的集总不确定性进行在线估计,设计一种基于扩张状态观测器的自适应积分滑模控制器,并通过设计自适应律动态调整滑模控制切换增益,以提高视觉伺服系统精度,同时达到抑制滑模控制抖振的效果。采用Lyapunov稳定性理论证明该控制方法的稳定性,最后通过仿真实验验证了所提出视觉伺服自适应滑模控制方法的可行性和有效性。
文摘The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.
文摘In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane,and compared with other relevant active disturbance rejection control(ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.
文摘相比燃油拖拉机,电动拖拉机具有节能高效、绿色清洁的优点。分布式驱动电动拖拉机结构简单、控制维度多,能进一步提高电动拖拉机的工作效率和作业精度。但是电机检测转速噪声导致轮毂电机速度波动严重,复杂路面及多种作业工况下进一步加剧了上述问题,严重降低了拖拉机的作业质量。针对上述问题,该研究提出一种基于sigmoid滤波器的线性自抗扰控制(linear active disturbance rejection control,LADRC)以提高轮毂电机的转速稳定性和抗扰动能力。该控制策略在传统LADRC的基础上引入sigmoid滤波器至扩张状态观测器(extended state observer,ESO),根据输入噪声信号误差变化改变滤波器带宽,以抑制观测误差中的中高频干扰信号,同时避免滤波器积分环节对轮毂电机速度跟踪快速性的影响,具有较快的收敛性。搭建试验平台对所提出控制策略进行试验验证,结果表明:与传统LADRC策略相比,本文所提控制策略在变速和变载工况下的转速脉动分别减小了32%和41.67%,iq电流脉动分别减小了6.25%和4.17%,可在快速、准确跟踪给定转速的同时,大幅提高轮毂电机驱动系统的噪声抑制性能,为复杂环境下电动拖拉机高精度作业提供技术参考。
文摘The extended state observer (ESO) is a novel observer for a class of uncertain systems. Since ESO adopts the continuous non-smooth structure, the classical observer design theory is hard to use for ESO analysis. In this note, the self-stable region (SSR) approach, which is a nonlinear synthesis method for nonlinear uncertain systems, will be used for ESO design and its stability analysis. The advantages of the non-smooth structure in ESO for improving the convergence properties and the estimation precision will be shown.
文摘针对直流配电网中母线电压控制问题,在双向AC/DC变换器传统双闭环控制器的基础上,设计一种基于扩张状态观测器(extended state observer,ESO)和终端滑模的非线性鲁棒电流前馈控制器,在不需要增加额外电压/电流传感器的情况下实现对系统内扰动的快速跟踪,有利于直流配电网中分布式电源与负荷的扩展和即插即用。传统电流前馈控制需要多个电流传感器采集负载电流信息,利用ESO与终端滑模控制理论将电流前馈控制系统转变为以直流母线电压为输入信号的非线性鲁棒电流前馈控制器,有效避免额外传感器的加入,减少装置费用,并且ESO可对系统各状态以及系统模型的不确定性和外部扰动进行实时跟踪,实现对系统中母线电压波动的快速抑制。软件数值仿真结果表明,该控制器表现出良好的控制效果和鲁棒性,对于直流母线电压波动具有很好的稳定效果。
文摘针对欠驱动四旋翼无人飞行器的系统特性,为解决传统四旋翼飞行控制方法中存在的弱点,如系统状态变量间相互有较大耦合、控制效果易受建模误差的影响及抵御外界干扰能力较弱等弱点,设计一种基于扩张状态观测器(extended state observer,ESO)的轨迹跟踪算法,由ESO实现对系统复合干扰的估计,并在控制律中对复合干扰进行实时补偿。由于ESO只需要测量系统输出即可实现对复合干扰的精确估计,因此在实际系统中易于实现,为验证所提算法,进行两种不同情况下的仿真研究,分别为矩形轨迹跟踪和圆形轨迹跟踪,仿真结果验证了所提算法的可行性。