The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods...Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches.展开更多
The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The class...The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.展开更多
Coronary artery abnormalities are the most important complications in children with Kawasaki disease(KD).Two-dimensional transthoracic echocardiography currently is the standard of care for initial evaluation and foll...Coronary artery abnormalities are the most important complications in children with Kawasaki disease(KD).Two-dimensional transthoracic echocardiography currently is the standard of care for initial evaluation and follow-up of children with KD.However,it has inherent limitations with regard to evaluation of mid and distal coronary arteries and,left circumflex artery and the poor acoustic window in older children often makes evaluation difficult in this age group.Catheter angiography(CA)is invasive,has high radiation exposure and fails to demonstrate abnormalities beyond lumen.The limitations of echocardiography and CA necessitate the use of an imaging modality that overcomes these problems.In recent years advances in computed tomography technology have enabled explicit evaluation of coronary arteries along their entire course including major branches with optimal and acceptable radiation exposure in children.Computed tomography coronary angiography(CTCA)can be performed during acute as well as convalescent phases of KD.It is likely that CTCA may soon be considered the reference standard imaging modality for evaluation of coronary arteries in children with KD.展开更多
图像重建是光学计算成像的关键环节之一。目前基于深度学习的图像重建主要使用卷积神经网络、循环神经网络或生成对抗网络等模型。大多数研究仅通过单一模态的数据训练模型,难以在保证成像质量的同时又具备不同场景的泛化能力。为解决...图像重建是光学计算成像的关键环节之一。目前基于深度学习的图像重建主要使用卷积神经网络、循环神经网络或生成对抗网络等模型。大多数研究仅通过单一模态的数据训练模型,难以在保证成像质量的同时又具备不同场景的泛化能力。为解决这一问题,提出了一种基于Transformer模块的多模态图像重建模型(multi-modal image reconstruction model based on the Transformer,Trans-MIR)。实验结果表明,Trans-MIR能够从多模态数据中提取图像特征,实现高质量的图像重建,对二维通用人脸散斑图像进行图像重建的结构相似度高达0.93,对三维微管结构图像的超分辨重建的均方误差低至10^(−4)量级。Trans-MIR对研究多模态图像重建具有一定的启发作用。展开更多
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金the National Natural Science Foundation of China(Grant No.11988102)is gratefully acknowledged.
文摘Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches.
基金Supported by National Natural Science Foundation of China (Grant Nos.51375032,51335003)
文摘The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.
文摘Coronary artery abnormalities are the most important complications in children with Kawasaki disease(KD).Two-dimensional transthoracic echocardiography currently is the standard of care for initial evaluation and follow-up of children with KD.However,it has inherent limitations with regard to evaluation of mid and distal coronary arteries and,left circumflex artery and the poor acoustic window in older children often makes evaluation difficult in this age group.Catheter angiography(CA)is invasive,has high radiation exposure and fails to demonstrate abnormalities beyond lumen.The limitations of echocardiography and CA necessitate the use of an imaging modality that overcomes these problems.In recent years advances in computed tomography technology have enabled explicit evaluation of coronary arteries along their entire course including major branches with optimal and acceptable radiation exposure in children.Computed tomography coronary angiography(CTCA)can be performed during acute as well as convalescent phases of KD.It is likely that CTCA may soon be considered the reference standard imaging modality for evaluation of coronary arteries in children with KD.
文摘图像重建是光学计算成像的关键环节之一。目前基于深度学习的图像重建主要使用卷积神经网络、循环神经网络或生成对抗网络等模型。大多数研究仅通过单一模态的数据训练模型,难以在保证成像质量的同时又具备不同场景的泛化能力。为解决这一问题,提出了一种基于Transformer模块的多模态图像重建模型(multi-modal image reconstruction model based on the Transformer,Trans-MIR)。实验结果表明,Trans-MIR能够从多模态数据中提取图像特征,实现高质量的图像重建,对二维通用人脸散斑图像进行图像重建的结构相似度高达0.93,对三维微管结构图像的超分辨重建的均方误差低至10^(−4)量级。Trans-MIR对研究多模态图像重建具有一定的启发作用。