A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov sub...A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.展开更多
Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study e...Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study establishes a thermal-hydraulics reduced-order model(ROM)for nuclear reactor circuit systems.The full-order circuit system calculation model is first established and verified and then used to calculate the thermal-hydraulic properties of the circuit system under different states as snapshots.The proper orthogonal decomposition method is used to extract the basis functions from snapshots,and the ROM is constructed using the least-squares method,effectively reducing the difficulty in constructing the ROM.A comparison between the full-order simulation and ROM prediction results of the AP1000 circuit system shows that the proposed ROM can improve computational efficiency by 1500 times while achieving a maximum relative error of 0.223%.This research develops a new direction and perspective for the digital twin modeling of nuclear reactor system circuits.展开更多
With the rapid development of the world economy,IGBT has been widely used in motor drive and electric energy conversion.In order to timely detect the fatigue damage of IGBT,it is necessary to monitor the junction temp...With the rapid development of the world economy,IGBT has been widely used in motor drive and electric energy conversion.In order to timely detect the fatigue damage of IGBT,it is necessary to monitor the junction temperature of IGBT.In order to realize the fast calculation of IGBT junction temperature,a finite element method of IGBT temperature field reduction is proposed in this paper.Firstly,the finite element calculation process of IGBT temperature field is introduced and the linear equations of finite element calculation of temperature field are derived.Temperature field data of different working conditions are obtained by finite element simulation to form the sample space.Then the covariance matrix of the sample space is constructed,whose proper orthogonal decomposition and modal extraction are carried out.Reasonable basis vector space is selected to complete the low dimensional expression of temperature vector inside and outside the sample space.Finally,the reduced-order model of temperature field finite element is obtained and solved.The results of the reduced order model are compared with those of the finite element method,and the performance of the reduced-order model is evaluated from two aspects of accuracy and rapidity.展开更多
This paper is devoted to application of the Reduced-Order Model(ROM)based on Volterra series to prediction of lift and drag forces due to airfoil periodic translation in transonic flow region.When there is large ampli...This paper is devoted to application of the Reduced-Order Model(ROM)based on Volterra series to prediction of lift and drag forces due to airfoil periodic translation in transonic flow region.When there is large amplitude oscillation of the relative Mach number,as appeared in helicopter rotor movement in forward flight,the conventional Volterra ROM is found to be unsatisfactory.To cover such applications,a matched Volterra ROM,inspired from previous multistep nonlinear indicial response method based on Duhamel integration,is thus considered,in which the step motions are defined inside a number of equal intervals with both positive and negative step motions to match the airfoil forward and backward movement,and the kernel functions are constructed independently at each interval.It shows that,at least for the translation movement considered,this matched Volterra ROM greatly improves the accuracy of prediction.Moreover,the matched Volterra ROM,with the total number of step motions and thus the computational cost close to those of the conventional Volterra ROM method,has the additional advantage that the same set of kernels can match various translation motions with different starting conditions so the kernels can be predesigned without knowing the specific motion of airfoil.展开更多
An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low...An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low-dimensional space by performing the Proper Orthogonal Decomposition(POD)on snapshots and is coupled with the Radial Basis Function(RBF)to achieve fast prediction speed.However,due to the disparate scales in the ionized flow field,the conventional ROM usually generates spurious negative errors.Here,this issue is addressed by performing flow-solution preprocessing in logarithmic space to improve the conventional ROM.Then,extra orthogonal polynomials are introduced in the RBF interpolation to achieve additional improvement of the prediction accuracy.In addition,to construct high-efficiency snapshots,a trajectory-constrained adaptive sampling strategy based on convex hull optimization is developed.To evaluate the performance of the proposed fast prediction method,two hypersonic vehicles with classic configurations,i.e.a wave-rider and a reentry capsule,are used to validate the proposed method.Both two cases show that the proposed fast prediction method has high accuracy near the vehicle surface and the free-stream region where the flow field is smooth.Compared with the conventional ROM prediction,the prediction results are significantly improved by the proposed method around the discontinuities,e.g.the shock wave and the ionized layer.As a result,the proposed fast prediction method reduces the error of the conventional ROM by at least 45%,with a speedup of approximately 2.0×105compared to the Computational Fluid Dynamic(CFD)simulations.These test cases demonstrate that the method developed here is efficient and accurate for predicting ionized hypersonic flows.展开更多
The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Theref...The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Therefore,this study proposes a reduced-order dynamic modeling method suitable for FDBPs and then analyzes the vibration transfer characteristics.For the modeling method,the finite element method and absorbing transfer matrix method(ATMM)are integrated,considering the fluid–structure coupling effect and fluid disturbances.The dual-domain dynamic substructure method is developed to perform the reduced-order modeling of FDBP,and ATMM is adopted to reduce the matrix order when solving fluid disturbances.Furthermore,the modeling method is validated by experiments on an H-shaped branch pipeline.Finally,transient and steady-state vibration transfer analyses of FDBP are performed,and the effects of branch locations on natural characteristics and vibration transfer behavior are analyzed.Results show that transient vibration transfer represents the transfer and conversion of the kinematic,strain,and damping energies,while steady-state vibration transfer characteristics are related to the vibration mode.In addition,multiple-order mode exchanges are triggered when branch locations vary in frequency-shift regions,and the mode-exchange regions are also the transformation ones for vibration transfer patterns.展开更多
针对2维超声心动图像噪声大且难于分割的特点,提出基于Centripetal Catmull-Rom曲线的多尺度活动形状模型的左心室分割方法。该算法在金字塔上层提取2维轮廓法线向量特征并采用马氏距离寻找新的特征点位置;在图像金字塔底层快速提取特...针对2维超声心动图像噪声大且难于分割的特点,提出基于Centripetal Catmull-Rom曲线的多尺度活动形状模型的左心室分割方法。该算法在金字塔上层提取2维轮廓法线向量特征并采用马氏距离寻找新的特征点位置;在图像金字塔底层快速提取特征点周围的Log-Gabor特征并使用Gentle Ada Boost训练分类器,选择置信度水平最高的点作为新的特征点位置。实验证明,这种方法较之传统活动形状模型分割更为精确且分割结果交互方便,有利于对结果的再编辑。展开更多
The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human liv...The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.展开更多
A three-dimensional wave-current-sediment coupled numerical model is developed to understand the sediment transport dynamics in the Zhujiang(Pearl)River Estuary(ZRE),China.The model results are in good agreement with ...A three-dimensional wave-current-sediment coupled numerical model is developed to understand the sediment transport dynamics in the Zhujiang(Pearl)River Estuary(ZRE),China.The model results are in good agreement with observed data,and statistics show good model skill scores.Numerical studies are conducted to assess the scenarios of suspended sediment in the ZRE under the effects of different forcing(river discharges,waves,and winds).The model results indicate that the estuarine gravitational circulation plays an important role in the development of estuarine turbidity maximum in the ZRE,particularly during neap tides.The increased river discharge can result in a seaward sediment transport.The suspended sediment concentration(SSC)in the bottom increases with both wave bottom orbital velocity and wave height.Because of the shallow water depth,the effect of waves on sediment in the west shoal is greater than that in the east channel.The southwesterly wind-induced wave affects the SSC more than those resulting from the northeasterly wind,while the northeasterly wind-driven circulation has a slightly greater influence on the SSC than that of the southwesterly wind.However,a steady southwesterly wind condition favors the increase of the SSC in the Lingding Bay more so than a steady northeasterly wind condition.If the other forcings are same,the averaged SSC under a steady southwesterly wind condition is about 1.1 times that resulting from a steady northeasterly wind.展开更多
The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-a...The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.展开更多
The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are base...The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.展开更多
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl...Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.展开更多
Recently, flutter active control using linear parameter varying(LPV) framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroela...Recently, flutter active control using linear parameter varying(LPV) framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant(LTI) models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency(p-LSCF) algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification,the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequencydomain maximum likelihood(ML) estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data.展开更多
Water circulation and sediment transport in the Beibu Gulf are important for its environmental protection and resource exploitation.By employing the Regional Ocean Modeling System(ROMS),we studied the seasonal varia...Water circulation and sediment transport in the Beibu Gulf are important for its environmental protection and resource exploitation.By employing the Regional Ocean Modeling System(ROMS),we studied the seasonal variation of circulation,sediment transport and long-term morphological evolution in the Beibu Gulf.The simulation results show that the circulation induced by tide and wind is cyclonic both in winter and summer in the gulf and that the wind-driven circulation is stronger in winter than that in summer.The sediment concentration is higher in the Qiongzhou Strait,west of the Hainan Island and the coast of Vietnam and the Leizhou Peninsula.The sediment is transported westwards in winter and eastwards in summer in the Qiongzhou Strait.The west entrance of the Qiongzhou Strait is dominated by westward transport all the year round.The sediment discharged by rivers is deposited near the river mouths.The simulated result demonstrates that the sediment transport is mainly controlled by tidal induced bottom resuspension in the Beibu Gulf.Four characteristics are summarized for the distribution patterns of erosion and deposition.(1) The erosion and deposition are insignificant in most area of the gulf.(2) Sediment deposition is more significant in the mouths of Qiongzhou Strait.(3) The erosion is observed in the seabed of Qiongzhou Strait.(4) Erosion and deposition occur alternatively in the west of Hainan Island.展开更多
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role...The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.展开更多
A major shortcoming of polynomial approximation in the medelling of distillation columns isthe difficulty encountered while choosing the number and location of collocation points,which are usually doneby rule of the t...A major shortcoming of polynomial approximation in the medelling of distillation columns isthe difficulty encountered while choosing the number and location of collocation points,which are usually doneby rule of the thumb,inevitably giving rise to high dimensionality and longer computation time for the resultingmodel.In order to take full advantage of polynomial approximation in the modelling of complicatedmulticomponent distillation columns,modifications must be made to the model reduction procedure originallyproposed by Cho.This is achieved by putting in special polynomials to each of the variable profiles.Furthermore,the number and location of the collocation points can be determined by the optimization of anappropriate objective function.This would bring about less dimensionality and less computation time for theresulting reduced--order model as compared with Cho’s procedure while its accuracy is still kept excellent.Theeffectiveness of such modifications is illustrated by two simulation examples.展开更多
This work proposes a method to construct a state-shared model for multiple-input multiple-output (MIMO) systems. A state-shared model is defined as a linear time invariant state-space structure that is driven by mea...This work proposes a method to construct a state-shared model for multiple-input multiple-output (MIMO) systems. A state-shared model is defined as a linear time invariant state-space structure that is driven by measurement signals-the plant outputs and the manipulated variables, but shared by different multiple input/output models. The genesis of the state-shared model is based on a particular reduced non minimal realization. Any such realization necessarily fulfills the requirement that the output of the state-shared model is an asymptotically correct estimate of the output of the plant, if the process model is selected appropriately. The approach is demomtrated on a nonlinear MIMO system - a physiological model of calcium fluxes that controls muscle contraction and relaxation in human cardiac myocytes.展开更多
Variations in incoming shortwave radiation influence the net surface heat flux,contributing to the formation of a temperature inversion.The effects of shortwave radiation on the temperature inversions in the Bay of Be...Variations in incoming shortwave radiation influence the net surface heat flux,contributing to the formation of a temperature inversion.The effects of shortwave radiation on the temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean have never been investigated.Thus,a high-resolution(horizontal resolution of 0.07°×0.07° with 50 vertical layers) Regional Ocean Modeling System(ROMS) model is utilized to quantify the contributions of shortwave radiation to the temperature inversions in the study domain.Analyses of the mixed layer heat and salt budgets are performed,and different model simulations are compared.The model results suggest that a 30% change in shortwave radiation can change approximately 3% of the temperature inversion area in the Bay of Bengal.Low shortwave radiation reduces the net surface heat flux and cools the mixed layer substantially;it also reduces the evaporation rate,causing less evaporative water vapor losses from the ocean than the typical situation,and ultimately enhances haline stratification.Thus,the rudimentary outcome of this research is that a decrease in shortwave radiation produces more temperature inversion in the study region,which is primarily driven by the net surface cooling and supported by the intensive haline stratification.Moreover,low shortwave radiation eventually intensifies the temperature inversion layer by thickening the barrier layer.This study could be an important reference for predicting how the Indian Ocean climate will respond to future changes in shortwave radiation.展开更多
文摘A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.
基金supported by the National Natural Science Foundation of China(No.12205389)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011735)Science and Technology on Reactor System Design Technology Laboratory(No.KFKT-05-FWHT-WU-2023014).
文摘Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study establishes a thermal-hydraulics reduced-order model(ROM)for nuclear reactor circuit systems.The full-order circuit system calculation model is first established and verified and then used to calculate the thermal-hydraulic properties of the circuit system under different states as snapshots.The proper orthogonal decomposition method is used to extract the basis functions from snapshots,and the ROM is constructed using the least-squares method,effectively reducing the difficulty in constructing the ROM.A comparison between the full-order simulation and ROM prediction results of the AP1000 circuit system shows that the proposed ROM can improve computational efficiency by 1500 times while achieving a maximum relative error of 0.223%.This research develops a new direction and perspective for the digital twin modeling of nuclear reactor system circuits.
基金supported in part by Heilongjiang Provincial Natural Science Foundation of China under Project TD2021E004in part by Ningbo Science and Technology Bureau under S&T Innovation 2025 Major Special Programme with project code 2019B10071。
文摘With the rapid development of the world economy,IGBT has been widely used in motor drive and electric energy conversion.In order to timely detect the fatigue damage of IGBT,it is necessary to monitor the junction temperature of IGBT.In order to realize the fast calculation of IGBT junction temperature,a finite element method of IGBT temperature field reduction is proposed in this paper.Firstly,the finite element calculation process of IGBT temperature field is introduced and the linear equations of finite element calculation of temperature field are derived.Temperature field data of different working conditions are obtained by finite element simulation to form the sample space.Then the covariance matrix of the sample space is constructed,whose proper orthogonal decomposition and modal extraction are carried out.Reasonable basis vector space is selected to complete the low dimensional expression of temperature vector inside and outside the sample space.Finally,the reduced-order model of temperature field finite element is obtained and solved.The results of the reduced order model are compared with those of the finite element method,and the performance of the reduced-order model is evaluated from two aspects of accuracy and rapidity.
文摘This paper is devoted to application of the Reduced-Order Model(ROM)based on Volterra series to prediction of lift and drag forces due to airfoil periodic translation in transonic flow region.When there is large amplitude oscillation of the relative Mach number,as appeared in helicopter rotor movement in forward flight,the conventional Volterra ROM is found to be unsatisfactory.To cover such applications,a matched Volterra ROM,inspired from previous multistep nonlinear indicial response method based on Duhamel integration,is thus considered,in which the step motions are defined inside a number of equal intervals with both positive and negative step motions to match the airfoil forward and backward movement,and the kernel functions are constructed independently at each interval.It shows that,at least for the translation movement considered,this matched Volterra ROM greatly improves the accuracy of prediction.Moreover,the matched Volterra ROM,with the total number of step motions and thus the computational cost close to those of the conventional Volterra ROM method,has the additional advantage that the same set of kernels can match various translation motions with different starting conditions so the kernels can be predesigned without knowing the specific motion of airfoil.
基金supported by the National Natural Science Foundation of China(Nos.11902271 and 91952203)the Fundamental Research Funds for the Central Universities of China(No.G2019KY05102)111 project on“Aircraft Complex Flows and the Control”of China(No.B17037)。
文摘An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low-dimensional space by performing the Proper Orthogonal Decomposition(POD)on snapshots and is coupled with the Radial Basis Function(RBF)to achieve fast prediction speed.However,due to the disparate scales in the ionized flow field,the conventional ROM usually generates spurious negative errors.Here,this issue is addressed by performing flow-solution preprocessing in logarithmic space to improve the conventional ROM.Then,extra orthogonal polynomials are introduced in the RBF interpolation to achieve additional improvement of the prediction accuracy.In addition,to construct high-efficiency snapshots,a trajectory-constrained adaptive sampling strategy based on convex hull optimization is developed.To evaluate the performance of the proposed fast prediction method,two hypersonic vehicles with classic configurations,i.e.a wave-rider and a reentry capsule,are used to validate the proposed method.Both two cases show that the proposed fast prediction method has high accuracy near the vehicle surface and the free-stream region where the flow field is smooth.Compared with the conventional ROM prediction,the prediction results are significantly improved by the proposed method around the discontinuities,e.g.the shock wave and the ionized layer.As a result,the proposed fast prediction method reduces the error of the conventional ROM by at least 45%,with a speedup of approximately 2.0×105compared to the Computational Fluid Dynamic(CFD)simulations.These test cases demonstrate that the method developed here is efficient and accurate for predicting ionized hypersonic flows.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.N2403006)the National Science and Technology Major Project,China(Grant No.J2019-I-0008-0008).
文摘The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Therefore,this study proposes a reduced-order dynamic modeling method suitable for FDBPs and then analyzes the vibration transfer characteristics.For the modeling method,the finite element method and absorbing transfer matrix method(ATMM)are integrated,considering the fluid–structure coupling effect and fluid disturbances.The dual-domain dynamic substructure method is developed to perform the reduced-order modeling of FDBP,and ATMM is adopted to reduce the matrix order when solving fluid disturbances.Furthermore,the modeling method is validated by experiments on an H-shaped branch pipeline.Finally,transient and steady-state vibration transfer analyses of FDBP are performed,and the effects of branch locations on natural characteristics and vibration transfer behavior are analyzed.Results show that transient vibration transfer represents the transfer and conversion of the kinematic,strain,and damping energies,while steady-state vibration transfer characteristics are related to the vibration mode.In addition,multiple-order mode exchanges are triggered when branch locations vary in frequency-shift regions,and the mode-exchange regions are also the transformation ones for vibration transfer patterns.
文摘针对2维超声心动图像噪声大且难于分割的特点,提出基于Centripetal Catmull-Rom曲线的多尺度活动形状模型的左心室分割方法。该算法在金字塔上层提取2维轮廓法线向量特征并采用马氏距离寻找新的特征点位置;在图像金字塔底层快速提取特征点周围的Log-Gabor特征并使用Gentle Ada Boost训练分类器,选择置信度水平最高的点作为新的特征点位置。实验证明,这种方法较之传统活动形状模型分割更为精确且分割结果交互方便,有利于对结果的再编辑。
基金The National Natural Science Foundation of China under contract Nos 41372173 and 51609244the Geological Survey Projects of China Geological Survey under contract No.121201006000182401
文摘The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.
基金The National Natural Science Foundation of China under contract Nos 41890851 and 41521005the Key Research Program of Frontier Sciences,Chinese Academy of Sciences under contract No.QYZDJ-SSW-DQC034the Foundation of Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences under contract No.ISEE2018PY05
文摘A three-dimensional wave-current-sediment coupled numerical model is developed to understand the sediment transport dynamics in the Zhujiang(Pearl)River Estuary(ZRE),China.The model results are in good agreement with observed data,and statistics show good model skill scores.Numerical studies are conducted to assess the scenarios of suspended sediment in the ZRE under the effects of different forcing(river discharges,waves,and winds).The model results indicate that the estuarine gravitational circulation plays an important role in the development of estuarine turbidity maximum in the ZRE,particularly during neap tides.The increased river discharge can result in a seaward sediment transport.The suspended sediment concentration(SSC)in the bottom increases with both wave bottom orbital velocity and wave height.Because of the shallow water depth,the effect of waves on sediment in the west shoal is greater than that in the east channel.The southwesterly wind-induced wave affects the SSC more than those resulting from the northeasterly wind,while the northeasterly wind-driven circulation has a slightly greater influence on the SSC than that of the southwesterly wind.However,a steady southwesterly wind condition favors the increase of the SSC in the Lingding Bay more so than a steady northeasterly wind condition.If the other forcings are same,the averaged SSC under a steady southwesterly wind condition is about 1.1 times that resulting from a steady northeasterly wind.
基金supported by the Public Science and Technology Research Funds Projects of Ocean 201105018the National Natural Science Foundation of China 41106023
文摘The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.
基金Project supported by the National Natural Science Foundation of China(Nos.11232011,11402262,11572314,and 11621202)
文摘The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.
基金co-supported by the National Natural Science Foundation of China (Nos. 61134004 and 61573289)Aeronautical Science Foundation of China (No. 20140753010)the Fundamental Research Funds for the Central Universities (No. 3102015BJ004)
文摘Recently, flutter active control using linear parameter varying(LPV) framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant(LTI) models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency(p-LSCF) algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification,the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequencydomain maximum likelihood(ML) estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data.
基金The part of the Sino-Germany Cooperative Project supported by the Guangzhou Marine Geological Surveythe National Natural Science Foundation of China under contract No.41625021+1 种基金the Ocean Special Funds for Scientific Research on Public Causes under contract No.201105001-2the Ministry of Land and Resources of the People’s Republic of China Technology Development Project under contract No.1212010914027-01
文摘Water circulation and sediment transport in the Beibu Gulf are important for its environmental protection and resource exploitation.By employing the Regional Ocean Modeling System(ROMS),we studied the seasonal variation of circulation,sediment transport and long-term morphological evolution in the Beibu Gulf.The simulation results show that the circulation induced by tide and wind is cyclonic both in winter and summer in the gulf and that the wind-driven circulation is stronger in winter than that in summer.The sediment concentration is higher in the Qiongzhou Strait,west of the Hainan Island and the coast of Vietnam and the Leizhou Peninsula.The sediment is transported westwards in winter and eastwards in summer in the Qiongzhou Strait.The west entrance of the Qiongzhou Strait is dominated by westward transport all the year round.The sediment discharged by rivers is deposited near the river mouths.The simulated result demonstrates that the sediment transport is mainly controlled by tidal induced bottom resuspension in the Beibu Gulf.Four characteristics are summarized for the distribution patterns of erosion and deposition.(1) The erosion and deposition are insignificant in most area of the gulf.(2) Sediment deposition is more significant in the mouths of Qiongzhou Strait.(3) The erosion is observed in the seabed of Qiongzhou Strait.(4) Erosion and deposition occur alternatively in the west of Hainan Island.
基金supported by the National Key Basic Research and Development Program(2010CB950404)the National High Technology Research and Development Program(2013AA09A506)
文摘The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.
基金This work was supported by the National Laboratory of Industrial Control Technique of China
文摘A major shortcoming of polynomial approximation in the medelling of distillation columns isthe difficulty encountered while choosing the number and location of collocation points,which are usually doneby rule of the thumb,inevitably giving rise to high dimensionality and longer computation time for the resultingmodel.In order to take full advantage of polynomial approximation in the modelling of complicatedmulticomponent distillation columns,modifications must be made to the model reduction procedure originallyproposed by Cho.This is achieved by putting in special polynomials to each of the variable profiles.Furthermore,the number and location of the collocation points can be determined by the optimization of anappropriate objective function.This would bring about less dimensionality and less computation time for theresulting reduced--order model as compared with Cho’s procedure while its accuracy is still kept excellent.Theeffectiveness of such modifications is illustrated by two simulation examples.
文摘This work proposes a method to construct a state-shared model for multiple-input multiple-output (MIMO) systems. A state-shared model is defined as a linear time invariant state-space structure that is driven by measurement signals-the plant outputs and the manipulated variables, but shared by different multiple input/output models. The genesis of the state-shared model is based on a particular reduced non minimal realization. Any such realization necessarily fulfills the requirement that the output of the state-shared model is an asymptotically correct estimate of the output of the plant, if the process model is selected appropriately. The approach is demomtrated on a nonlinear MIMO system - a physiological model of calcium fluxes that controls muscle contraction and relaxation in human cardiac myocytes.
基金The Marine Scholarship of ChinaChina Scholarship Council for International Doctoral Students under contract No.2017SOA016552the National Natural Science Foundation of China under contract Nos U2106204 and 41676003。
文摘Variations in incoming shortwave radiation influence the net surface heat flux,contributing to the formation of a temperature inversion.The effects of shortwave radiation on the temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean have never been investigated.Thus,a high-resolution(horizontal resolution of 0.07°×0.07° with 50 vertical layers) Regional Ocean Modeling System(ROMS) model is utilized to quantify the contributions of shortwave radiation to the temperature inversions in the study domain.Analyses of the mixed layer heat and salt budgets are performed,and different model simulations are compared.The model results suggest that a 30% change in shortwave radiation can change approximately 3% of the temperature inversion area in the Bay of Bengal.Low shortwave radiation reduces the net surface heat flux and cools the mixed layer substantially;it also reduces the evaporation rate,causing less evaporative water vapor losses from the ocean than the typical situation,and ultimately enhances haline stratification.Thus,the rudimentary outcome of this research is that a decrease in shortwave radiation produces more temperature inversion in the study region,which is primarily driven by the net surface cooling and supported by the intensive haline stratification.Moreover,low shortwave radiation eventually intensifies the temperature inversion layer by thickening the barrier layer.This study could be an important reference for predicting how the Indian Ocean climate will respond to future changes in shortwave radiation.