Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation ...Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.展开更多
The demand for miniaturization and integration of optical elements has fostered the development of various micro-and nanofabrication technologies.In this work,we developed a low-cost UV-LED-based microscope projection...The demand for miniaturization and integration of optical elements has fostered the development of various micro-and nanofabrication technologies.In this work,we developed a low-cost UV-LED-based microscope projection photolithography system for rapid and high-resolution fabrication.This system can be easily implemented using off-the-shelf components.It allows for micro-and nanostructuring within seconds.By optimizing the process,a minimum feature size down to approximately 85 nm was successfully realized.In addition,investigations on fabrication of the same structures using both costly and economic microscope objectives were performed.Feature sizes below 100 nm can be stably achieved.The demonstrated approach extends the technology capabilities and may find applications in fields such as nanophotonics,biophotonics sensing and material science.展开更多
Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or...Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or quasi-Gaussian distribution will carry the pattern on DMD to etch the resin. It provides a method of precise control of laser beam shapes and?photon-induced curing behavior of resin. This technology provides an accurate micro-fabrication of microstructures used for micro-systems. As a virtual mask generator and a binary-amplitude spatial light modulator, DMD is equivalent to the masks in the conventional exposure system. As the virtual masks and shaped laser beam can be achieved flexibly, it is a good method of precision soft lithography for 2D/3D microstructures.展开更多
Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications.Unlike traditional ones made of elastomers doped with conductive components or fabricated wit...Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications.Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors,ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible.However,dehydration is a challenging issue for the latter.Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration.However,the reported multistep approaches are generally time-consuming.Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors,yet requires a self-built digital-light-processing-based multimaterial 3D printer.Here,we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes.This method only requires a UV projector/lamp with photomasks;the chemicals are commercially available;the protocols for preparing the polymer precursors are friendly to users without chemistry background.Moreover,the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter.The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices.展开更多
Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by anal...Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by analyzing fused silica homogeneity distribution in two perpendicular measurement directions.Using the GRIN model,a lithography projection lens with a numerical aperture of 0.75 is analyzed.Root mean square wavefront aberration deteriorates from 0.9 to 9.65 nm and then improves to 5.9 nm after clocking.展开更多
作为当前集成电路制造的主流技术,光学光刻在趋近其分辨力极限的同时,面临着越来越大的挑战,即便在波前工程和分辨力增强技术的帮助下,光学光刻的分辨力也难以满足快速发展的半导体产业的技术需求。接近式 X 射线光刻技术(XRL)、散射角...作为当前集成电路制造的主流技术,光学光刻在趋近其分辨力极限的同时,面临着越来越大的挑战,即便在波前工程和分辨力增强技术的帮助下,光学光刻的分辨力也难以满足快速发展的半导体产业的技术需求。接近式 X 射线光刻技术(XRL)、散射角限制电子束投影光刻技术(SCALPEL)、电子束直写光刻技术(EBDW)、极紫外线即软 X 射线投影光刻技术(EUVL)、离子投影光刻技术(IPL)等下一代光刻技术(NGL)将会在特征线宽为 100—70 nm 的技术节点介入集成电路制造的主流技术中。从目前 NGL 技术发展的趋势和市场需求的多元化来看,竞争的结果很可能是各种 NGL 技术并存。当特征尺寸进入纳米尺度(≤100 nm)以后,最终只有那些原子级的成像技术才能成为胜者。展开更多
文摘Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.
基金the financial support from the German Research Foundation(DFG)under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD(EXC 2122,Project ID 390833453).
文摘The demand for miniaturization and integration of optical elements has fostered the development of various micro-and nanofabrication technologies.In this work,we developed a low-cost UV-LED-based microscope projection photolithography system for rapid and high-resolution fabrication.This system can be easily implemented using off-the-shelf components.It allows for micro-and nanostructuring within seconds.By optimizing the process,a minimum feature size down to approximately 85 nm was successfully realized.In addition,investigations on fabrication of the same structures using both costly and economic microscope objectives were performed.Feature sizes below 100 nm can be stably achieved.The demonstrated approach extends the technology capabilities and may find applications in fields such as nanophotonics,biophotonics sensing and material science.
文摘Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or quasi-Gaussian distribution will carry the pattern on DMD to etch the resin. It provides a method of precise control of laser beam shapes and?photon-induced curing behavior of resin. This technology provides an accurate micro-fabrication of microstructures used for micro-systems. As a virtual mask generator and a binary-amplitude spatial light modulator, DMD is equivalent to the masks in the conventional exposure system. As the virtual masks and shaped laser beam can be achieved flexibly, it is a good method of precision soft lithography for 2D/3D microstructures.
基金This work was supported by the National Key Research and Development Program of China[NO.2020YFB1312900]the Science,Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]+1 种基金the Agency for Science,Technology and Research(A*STAR,Singapore)AME Programmatic Funding Scheme[A18A1b0045]the SUTD Digital Manufacturing and Design Center(DManD).
文摘Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications.Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors,ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible.However,dehydration is a challenging issue for the latter.Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration.However,the reported multistep approaches are generally time-consuming.Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors,yet requires a self-built digital-light-processing-based multimaterial 3D printer.Here,we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes.This method only requires a UV projector/lamp with photomasks;the chemicals are commercially available;the protocols for preparing the polymer precursors are friendly to users without chemistry background.Moreover,the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter.The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices.
基金supported by the Major National Science and Technology Project of China(No.2009ZX02205)
文摘Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by analyzing fused silica homogeneity distribution in two perpendicular measurement directions.Using the GRIN model,a lithography projection lens with a numerical aperture of 0.75 is analyzed.Root mean square wavefront aberration deteriorates from 0.9 to 9.65 nm and then improves to 5.9 nm after clocking.