An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc...The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.展开更多
Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and...Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.展开更多
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively...This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.展开更多
Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization met...Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.展开更多
The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great co...The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.展开更多
The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron r...The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non- welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.展开更多
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ...Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure.展开更多
With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear ...With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test.展开更多
In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding ...In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.展开更多
Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain...Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS.展开更多
Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser.The microstructure evolution of the reduced activation steel was investigated using the sca...Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser.The microstructure evolution of the reduced activation steel was investigated using the scanning electron microscope,transmission electron microscope and electron backscatter diffraction.The experimental results showed that the grains close to the substrate were smaller than the grains in the upper layers.Compared to those deposited using a Gaussian laser,the samples deposited using a ring-shaped laser showed a more homogeneous microstructure.Furthermore,a finite element analysis(FEA)model was applied to reveal the thermal history during laser melting deposition.The simulation results were well validated with the experimental results.FEA results indicate that the peak temperature increases and the cooling rate decreases,as the layer gets further from the substrate.Additionally,the temperature and the cooling rate resulting from the Gaussian laser model were higher at the midline of the samples and lower around the edges,whereas those of the ring-shaped laser model were consistent with both at the center and around the edges.展开更多
The effect of smelting processes on mechanical properties and microstructure of reduced activation ferritic steels was studied.Creep properties and impact toughness of reduced activation ferritic steels were obviously...The effect of smelting processes on mechanical properties and microstructure of reduced activation ferritic steels was studied.Creep properties and impact toughness of reduced activation ferritic steels were obviously improved by vacuum induction melting followed by consumable electrode remelting process in comparison with the conventional vacuum induction melting process.The difference of impact toughness and creep properties between both steels mainly depended on the aspect ratio and mean size of precipitates.Decreasing the aspect ratio of carbides makes development of a shear band more difficult , which could increase impact energy and creep resistance.展开更多
The effect of TaC on grains and packets coarsening in the reduced activation ferritic/martensitic (RAFM) steels was investigated. It was found that the combined effect of the austenitizing temperature and heating ra...The effect of TaC on grains and packets coarsening in the reduced activation ferritic/martensitic (RAFM) steels was investigated. It was found that the combined effect of the austenitizing temperature and heating rate resulted in the heterogeneous austenite grain growth. When the austenitizing temperature was raised above 1 423 K, the TaC particles disappeared, and the homogenous grains abruptly increased. The thermodynamic model for dissolution of TaC particles during austenitizing was applied to interpret the results.展开更多
Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90℃ to 20℃. Charpy impact tests show that the duc...Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90℃ to 20℃. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60℃. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field (Hc) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of InHc versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.展开更多
The temperature field distribution and thermal history of Fe-9Cr2WVTa reduced activation steel prepared by laser melting deposition(LMD)have been calculated with Gaussian and Ring laser beams,and the nucleation and gr...The temperature field distribution and thermal history of Fe-9Cr2WVTa reduced activation steel prepared by laser melting deposition(LMD)have been calculated with Gaussian and Ring laser beams,and the nucleation and growth behaviors of M_(23)C_(6)precipitates in the 1st,7th and 19th layers have been calculated using the modified classical nucleation theory and Svoboda Fischer Fratzl Kozeschnik model.The energy distribution shows W-shape with Ring laser beam while it shows V-shape with Gaussian laser beam,which results in the more uniform M_(23)C_(6)size in the same layer with Ring laser beam.Precipitates in the bottom(i.e.,the 1st layer)have the minimum size and the size increases with the layer number with Gaussian and Ring laser beams.The temperature history,the instantaneous nucleation rate and the size evolution of M_(23)C_(6)have been systematically discussed.The results indicate that the nucleation,growth and re-dissolution of precipitates in reduced activation steel depend on the amount of energy absorbed in the thermal cycle during LMD.The continuous accumulation of energy during the thermal cycle leads to larger M_(23)C_(6)at the top area.The unsteady state precipitation dynamics of M_(23)C_(6)carbides during thermal cycling are consistent with the simulation results.展开更多
Here,Ag2S nanoparticles on reduced graphene oxide(Ag2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag2S NPs/RGO via a facile hydrothermal ...Here,Ag2S nanoparticles on reduced graphene oxide(Ag2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag2S NPs is also rich with metal center Ag(δ^+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag2S NPs;and(3) electron transfer from RGO to Ag2S NPs,facilitating the uptake of electrons by 4-NP molecules.展开更多
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)+1 种基金the National Key Research and Development Plan of China(No.2018YFE0307101)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSC-CIP009)。
文摘The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.
基金supported by the China Nuclear Energy Development Program (No. H6603100)
文摘Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.
基金the National Key Research and Development Program of China(No.2016YFB 0300600)the National Natural Science Foundation of China(NSFC)(No.51922026)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.N2002013,N2002005,N2007011)the 111 Project(No.B20029).
文摘This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.
文摘Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.
基金financial support from the National Natural Science Foundation of China(grant no.21406052the Program for the Outstanding Young Talents of Hebei Province(grant no.BJ2014010)the Scientific Research Foundation for Selected Overseas Chinese Scholars,Ministry of Human Resources and Social Security of China(grant no.CG2015003002)
文摘The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.
基金supported by National Natural Science Foundation of China (50701017)Japan-China Core University Program on Plasma and Nuclear Fusion
文摘The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non- welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.
文摘Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure.
基金The research is supported by“National Natural Science Foundation of China”under Grant No.61572526thanks to Mr.He from the material radiation effect team of the China Institute of Atomic Energy.With the help and guidance of Mr.He and Mr.Deng,the experiment was successfully conducted,and the results were greatly improved,which enhanced the structure of this article.Thanks to the editor for giving detailed comments,the quality of the article can be improved.
文摘With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51325401 and U1660201)the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB119001)
文摘In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.
文摘Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS.
基金This work was supported financially by the National Key R&D Program of China(Grant No.2018YFB1105801)the National Natural Science Foundation of China(Grant No.51701134).
文摘Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser.The microstructure evolution of the reduced activation steel was investigated using the scanning electron microscope,transmission electron microscope and electron backscatter diffraction.The experimental results showed that the grains close to the substrate were smaller than the grains in the upper layers.Compared to those deposited using a Gaussian laser,the samples deposited using a ring-shaped laser showed a more homogeneous microstructure.Furthermore,a finite element analysis(FEA)model was applied to reveal the thermal history during laser melting deposition.The simulation results were well validated with the experimental results.FEA results indicate that the peak temperature increases and the cooling rate decreases,as the layer gets further from the substrate.Additionally,the temperature and the cooling rate resulting from the Gaussian laser model were higher at the midline of the samples and lower around the edges,whereas those of the ring-shaped laser model were consistent with both at the center and around the edges.
基金Item Sponsored by National Basic Research Program of China ( 2011GB108006 )National Natural Science Foundation of China ( 51071090 )
文摘The effect of smelting processes on mechanical properties and microstructure of reduced activation ferritic steels was studied.Creep properties and impact toughness of reduced activation ferritic steels were obviously improved by vacuum induction melting followed by consumable electrode remelting process in comparison with the conventional vacuum induction melting process.The difference of impact toughness and creep properties between both steels mainly depended on the aspect ratio and mean size of precipitates.Decreasing the aspect ratio of carbides makes development of a shear band more difficult , which could increase impact energy and creep resistance.
基金Item Sponsored by National Basic Research Program of China(2010CB731600,2009GB109000)National Natural Science Foundation of China(51071090)
文摘The effect of TaC on grains and packets coarsening in the reduced activation ferritic/martensitic (RAFM) steels was investigated. It was found that the combined effect of the austenitizing temperature and heating rate resulted in the heterogeneous austenite grain growth. When the austenitizing temperature was raised above 1 423 K, the TaC particles disappeared, and the homogenous grains abruptly increased. The thermodynamic model for dissolution of TaC particles during austenitizing was applied to interpret the results.
文摘Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90℃ to 20℃. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60℃. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field (Hc) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of InHc versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.
基金This work is supported by NSAF(Grant No.U2030102)National Natural Science Foundation of China(Grant Nos.52071124 and 51701134)State Key Laboratory of New Ceramic and Fine Processing,Tsinghua University(No.KF202115).
文摘The temperature field distribution and thermal history of Fe-9Cr2WVTa reduced activation steel prepared by laser melting deposition(LMD)have been calculated with Gaussian and Ring laser beams,and the nucleation and growth behaviors of M_(23)C_(6)precipitates in the 1st,7th and 19th layers have been calculated using the modified classical nucleation theory and Svoboda Fischer Fratzl Kozeschnik model.The energy distribution shows W-shape with Ring laser beam while it shows V-shape with Gaussian laser beam,which results in the more uniform M_(23)C_(6)size in the same layer with Ring laser beam.Precipitates in the bottom(i.e.,the 1st layer)have the minimum size and the size increases with the layer number with Gaussian and Ring laser beams.The temperature history,the instantaneous nucleation rate and the size evolution of M_(23)C_(6)have been systematically discussed.The results indicate that the nucleation,growth and re-dissolution of precipitates in reduced activation steel depend on the amount of energy absorbed in the thermal cycle during LMD.The continuous accumulation of energy during the thermal cycle leads to larger M_(23)C_(6)at the top area.The unsteady state precipitation dynamics of M_(23)C_(6)carbides during thermal cycling are consistent with the simulation results.
文摘Here,Ag2S nanoparticles on reduced graphene oxide(Ag2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag2S NPs is also rich with metal center Ag(δ^+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag2S NPs;and(3) electron transfer from RGO to Ag2S NPs,facilitating the uptake of electrons by 4-NP molecules.