期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pneumatic resistance network analysis and dimension optimization of high pressure electronic pneumatic pressure reducing valve 被引量:2
1
作者 徐志鹏 王宣银 《Journal of Central South University》 SCIE EI CAS 2011年第3期666-671,共6页
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r... The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system. 展开更多
关键词 high pressure pressure reducing valve pneumatic resistance dimension optimization genetic algorithm
下载PDF
Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve 被引量:12
2
作者 Zhi-jiang JIN Lin WEI +2 位作者 Li-long CHEN Jin-yuan QIAN Ming ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第2期137-146,共10页
In this paper, a new pressure reducing valve (PRV) with an orifice plate is proposed. The main objective is to explain the mechanisms of pressure reduction and energy conversion in the new PRV. A numerical simulatio... In this paper, a new pressure reducing valve (PRV) with an orifice plate is proposed. The main objective is to explain the mechanisms of pressure reduction and energy conversion in the new PRV. A numerical simulation method was used to investigate the PRV internal flow field and to analyze the throttling effects of the orifice plate and the transform of thermal parameters as outlet pressure, outlet temperature, velocity, and superheat. A structure improvement method for the valve body and orifice plate is put forward to reduce energy loss. The governing equations for internal flow numerical simulation are composed of the continuity, momentum, energy and k-e transport equations, based on isotropic eddy viscosity theory. Different valve plug displacement models were built to describe the double throttling process. Our analysis shows that the steam pressure drops twice and the degree of superheat increases. There are also lots of eddies which clog the flow channel and disturb the steam flow in the valve cavity after the valve plug and the outlet cavity. After modifying the structure, the numerical results show a better performance of steam flow. 展开更多
关键词 Numerical simulation Pressure and temperature reducing system Pressure reducing valve (PRV) Double throttling Structural improvement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部