In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream proces...In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry.展开更多
Bimetallic Au_xCu_y/CeO_2(x/y = 3/1,1/1,and 1 /3) catalysts were prepared by direct anion exchange(DAE),following impregnation(IMP) methods,and used for selective hydrogenation of cinnamaldehyde.The effects of p...Bimetallic Au_xCu_y/CeO_2(x/y = 3/1,1/1,and 1 /3) catalysts were prepared by direct anion exchange(DAE),following impregnation(IMP) methods,and used for selective hydrogenation of cinnamaldehyde.The effects of pretreatments,such as calcination or reduction on the catalytic activities of these catalysts were investigated.XRD and HRTEM showed that for the reduced catalysts,there is the formation of an Au-Cu alloy.HAADF-STEM displayed that reduction pretreatment leads to a very homogenous distribution of Au and Cu on the external catalyst surface.Reaction parameters,such as CAL concentration,the stirring speed,nature of the solvent influence the catalytic activities.Pretreatments lead to a major effect on CAL conversion and HCAL selectivity.Catalysts Au_xCu_y/CeO_2 pretreated under reduction display higher CAL conversion and HCAL selectivity than that of under calcination mainly due to the synergistic effect resulting in a formation of Au-Cu alloy.展开更多
基金support from the National Natural Science Foundation of China(21978128,91934302)partial support from the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)also acknowledged.Additionallysupported by the“Cultivation Program for The Excellent Doctoral Dissertation of Nanjing Tech University(3800124701)”.
文摘In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry.
基金the Chinese Scholarship Council (CSC), French Eiffel Scholarship for financial supports of Xuemei Liaothe financial supported by the Open Research Subject of key laboratory (Research Base) of Grain and Oil Engineering and food safety (No. szjj2015-006)Agricultural and Forestry Talents in Food quality and safety, Key Research Fund of Xihua University (No. Z1520527)
文摘Bimetallic Au_xCu_y/CeO_2(x/y = 3/1,1/1,and 1 /3) catalysts were prepared by direct anion exchange(DAE),following impregnation(IMP) methods,and used for selective hydrogenation of cinnamaldehyde.The effects of pretreatments,such as calcination or reduction on the catalytic activities of these catalysts were investigated.XRD and HRTEM showed that for the reduced catalysts,there is the formation of an Au-Cu alloy.HAADF-STEM displayed that reduction pretreatment leads to a very homogenous distribution of Au and Cu on the external catalyst surface.Reaction parameters,such as CAL concentration,the stirring speed,nature of the solvent influence the catalytic activities.Pretreatments lead to a major effect on CAL conversion and HCAL selectivity.Catalysts Au_xCu_y/CeO_2 pretreated under reduction display higher CAL conversion and HCAL selectivity than that of under calcination mainly due to the synergistic effect resulting in a formation of Au-Cu alloy.