A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The ...A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.展开更多
In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium su...In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite.展开更多
In the present study we reported the feasibility of the Anethum graveolens as biosorbent to remove Pb(II) from aqueous solutions. Anethum graveolens was characterized by scanning electron microscopy and elemental anal...In the present study we reported the feasibility of the Anethum graveolens as biosorbent to remove Pb(II) from aqueous solutions. Anethum graveolens was characterized by scanning electron microscopy and elemental analysis. The ability of Anethum graveolens to adsorb Pb(II) was investigated by using batch adsorption procedure. The effects such as pH, contact time, adsorbate concentration and biosorbent dosage on the adsorption capacity were studied. The experimental data were analysed using various adsorption kinetic models viz., the pseudo-first and second-order equations, Bangham’s equation, intraparticle diffusion and Elovich models. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process. The equilibrium nature of Pb(II) adsorption at 30℃ has been described by the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherm models. The equilibrium data fit well on Langmuir isotherm. The monolayer adsorption capacity of Pb(II) onto Anethum graveolens as obtained from Langmuir isotherm at 30℃ was found to be 303 mg/g. This high adsorption capacity of Anethum graveolens places this biosorbent as one of the best adsorbents for removal of Pb(II) from aqueous effluents.展开更多
In this research dobera leaves (DL), an agricultural waste, available in large quantity in south region of Saudi Arabia, were used as low-cost adsorbent for removal of metal ions such as Pb(II). Batch operation was us...In this research dobera leaves (DL), an agricultural waste, available in large quantity in south region of Saudi Arabia, were used as low-cost adsorbent for removal of metal ions such as Pb(II). Batch operation was used to study the equilibrium behavior of DL. The effects of initial concentration of Pb(II), solution pH, contact time and adsorbent dose were evaluated. To study the kinetics of adsorption of Pb(II) onto DL, pseudo-first-order, pseudo-second-order and intra-particle diffusion were used. Adsorption process undergoes pseudo-second-order kinetic as proved by the high value of R2. Furthermore, to design the equilibrium data of adsorption of process, four adsorption isotherm models such as Langmuir, Freundlich Temkin and Dubinin-Radushkevich (D-R) were used. It is found that Langmuir equation has the highest value of R2 (0.999) compared with other models. In presences of a mixture of Pb(II)/Ni(II), DL were found to be selective for Pb(II) ions with a high adsorptive capacity of 83 mg/g and show favorable adsorption with RL < 1. In addition, preliminary results indicate that DL are very effective adsorbent for the removal of Pb(II) ions (>90%) from drinking water with less competition of other ions present in water.展开更多
To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation,the reaction behaviors of Pb and Zn sulfates ...To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation,the reaction behaviors of Pb and Zn sulfates during this process were investigated.Chemical analysis showed that the transformation ratios of PbSO4 and ZnSO4 could reach 65.51%and 52.12%,respectively,after reduction roasting,and the introduction of a sulfidation agent could improve the transformation ratios of these sulfates.scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)revealed that temperature obviously affects the particle size,crystal growth,and morphology of the artificial Pb and Zn sulfide minerals.Particle size analysis demonstrated that the particle size of the materials increases after roasting.Flotation tests revealed that a flotation concentrate composed of 12.01wt%Pb,27.78wt%Zn,and 6.975×10^(−2)wt%Ag with recoveries of 60.54%,29.24%,and 57.64%,respectively,could be obtained after roasting.展开更多
This work examined the removal of Pb(II) using a chitosan derivative (SB, synthesized from benzaldehyde) assisted by a magnetic field. The adsorption capacity for Pb(II) was investigated. It was found that 1) the pH a...This work examined the removal of Pb(II) using a chitosan derivative (SB, synthesized from benzaldehyde) assisted by a magnetic field. The adsorption capacity for Pb(II) was investigated. It was found that 1) the pH and concentration of the ion solution, as well as exposure time and strength of magnetic field, affected the degree of adsorption;and 2) studies of the adsorption isotherms and kinetics of ions onto SB revealed that SB showed enhanced adsorption capacity towards Pb(II) ions in a magnetic field compared with magnetically untreated samples. The Langmuir and Freundlich isotherm were applied to describe the experimental adsorption, and the maximum adsorption capacity of SB for Pb(II) was 2.5040 mg/g, when assisted by a magnetic field of 480 kA/m.展开更多
Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquati...Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.展开更多
Chemical compositions of natural zeolites, porcelanite (opal-CT) and local sands were determined by X-ray fluorescence (XRF) and correlated with their Pb(II) removal efficiencies. Zeolites and porcelanite were from th...Chemical compositions of natural zeolites, porcelanite (opal-CT) and local sands were determined by X-ray fluorescence (XRF) and correlated with their Pb(II) removal efficiencies. Zeolites and porcelanite were from the Mikawer, Aritain and Hannon areas in Jordan. Sands (white, red and yellow) were from the United Arab Emirates (UAE). The effect of Pb(II) concentration and zeolite dosage on removal efficiency was investigated at 25.0°C using the batch equilibrium method. Commercial kaolinite, silica and alumina were also studied for comparison. Removal efficiencies, in mg Pb(II)/g adsorbent, were: 76.9, 52.7 and 42.1 for Hannon, Mikawer and Aritain zeolites, respectively;58.2 for porcelanite;29.7, 11.0 and 8.5 for yellow, red and white sand, respectively;7.2, 3.3 and 1.3 for kaolinite, silica and alumina, respectively. XRF data indicate that adsorbents with intermediate molar ratios of Si/Al, in the range 2.70 - 2.93, are most efficient in Pb(II) removal. Scanning electron microscope (SEM) images of adsorbents suggest that morphology, in addition to chemical composition, plays a key role. In particular, a combination of factors, including shapes and sizes of crystals, channels in zeolites and pores in porcelanite, appear to favor removal of Pb(II).展开更多
The kinetics and stoichiometry of the reduction of H2O2 by an aminocaboxylactocobaltate(II) complex (hereafter[CoHEDTAOH2]-) in aqueous medium have been studied under the following conditions: T = 29℃ ± 1℃, Ion...The kinetics and stoichiometry of the reduction of H2O2 by an aminocaboxylactocobaltate(II) complex (hereafter[CoHEDTAOH2]-) in aqueous medium have been studied under the following conditions: T = 29℃ ± 1℃, Ionic Strength, I = 0.50 mol dm-3 (NaClO4), [H+] = 1 × 10-3 mol dm-3. The ratio from the stoichiometric study conforms to the equation 2[CoHEDTAOH2]- + H2O2 + 2H+ → 2 [CoHEDTAOH2] + 2H2O. The rate of reaction varied linearly to the first power of the concentrations of the reductant and oxidant and displayed inverse dependence on acid concentration. The plot of acid dependent rate constant versus [H+]-1 was linear with zero intercept. The [CoHEDTAOH2]- - H2O2 reaction was insensitive to the change in ionic strength of the medium suggesting interaction of charged and uncharged species at the activated complex. The Michaelis-Menten plot of was linear without intercept which suggested absence of intermediate complex. Evidences in this paper showed that the reaction occurred through the outer-sphere mechanism.展开更多
The electrochemical reduction of CO2 on a Pb electrode was investigated in 0. 1 mol/L KOH/methanol electrolyte at different temperatures and pressures. A graphite electrode was employed as the counter electrode, and a...The electrochemical reduction of CO2 on a Pb electrode was investigated in 0. 1 mol/L KOH/methanol electrolyte at different temperatures and pressures. A graphite electrode was employed as the counter electrode, and an AglAgCl (sat. KCl) electrode was used as the reference electrode. The Tafel plots of the products by the electrochemical reduction of CO2 showed that the formation process of HCOOH differed from that of CO and the reduction of CO2was not limited by the diffusion of CO2 in the investigated potential range. Kinetic analysis indicated that the reaction orders were 0. 573 for electrochemical reduction of CO2 to CO and 0. 671 for CO2 to HCOOH in the cathodic direction.展开更多
Influence of Hg(II) and Pb(II) ions on C-Phycocyanin (C-PC) from cyanobacteria Spirulina platensis was investigated using Fluorescence spectroscopy. Fluorescence measurements demonstrate quenching of C-PC emission by ...Influence of Hg(II) and Pb(II) ions on C-Phycocyanin (C-PC) from cyanobacteria Spirulina platensis was investigated using Fluorescence spectroscopy. Fluorescence measurements demonstrate quenching of C-PC emission by Hg(II) and Pb(II), and blue shifts in the fluorescence spectra. The effect of DNA on the fluorescence of Hg(II)-and Pb(II)-C-PC (from Spirulina platensis) complexes was also studied. It was shown that the fluorescence intensity of Hg-C-PC after addition of DNA gave rise to the fluorescence buildup. At the same time, addition of DNA to the Pb(II)-C-PC complexes showed no such effect. In the case of Hg(II)-C-PC, fluorescence intensity significantly decreases in time, while for Pb(II)-C-PC, decrease of the fluorescence intensity is not significant, but blue shift of the peak takes place.展开更多
In this study, the modified rice bran was tested to remove Pb(II) from water. Batch experiments were carried out to evaluate the adsorption characteristics of the modified rice bran for Pb(II) removal from aqueous sol...In this study, the modified rice bran was tested to remove Pb(II) from water. Batch experiments were carried out to evaluate the adsorption characteristics of the modified rice bran for Pb(II) removal from aqueous solutions. The adsorption isotherms, thermodynamic parameters, kinetics, pH effect, and desorbability were examined. The results show that the maximum adsorption capacity of the modified rice bran was approximately 70.8 mg Pb(II)/g absorbent at temperature of 25℃ and at the initial Pb(II) concentration of 400 mg/L and pH 7.0. And the adsorption isotherm data could be well fitted by both Langmuir equation and Freundlich equation. Thermodynamic studies confirmed that the process was spontaneous and endothermic. The adsorbed amounts of Pb(II) tend to increase with the increase of pH. The adsorption kinetic data can be satisfactorily described by either of the power functions and simple Elovich equations. The desorbability of Pb(II) is about 15-20%, and it is relatively difficult for the adsorbed Pb(II) to be desorbed. The relatively low cost and high capabilities of the rice bran make it potentially attractive adsorbent for the removal of Pb(II) from wastewater.展开更多
Based on the advantage of high surface area and strong adsorption ability of potassium hexatitanate whisker, a method to determine trace Pb(II) content by combining solid phase extraction with Flame atomic absorption ...Based on the advantage of high surface area and strong adsorption ability of potassium hexatitanate whisker, a method to determine trace Pb(II) content by combining solid phase extraction with Flame atomic absorption spectrometry (FAAS) was established. The adsorptive behavior of potassium hexatitanate whisker to Pb(II), primary influencing factors of adsorption and elution and effect of coexistence ions were investigated systemically. The optimal analytical conditions were discussed and examined. It was found that the adsorption rate of potassium hexatitanate whisker to Pb(II) was 100% at pH 4.0. Pb(II) could be eluted from potassium tetratitanate whisker with HCl (2mol/L) under boiling water for 30min. The detection limit was 5.75ng/mL, and relative standard deviation was 1.66% (n=9, CPb=2.0μg/mL).展开更多
The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
文摘A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.
基金the Fundamental Research Funds for the Central Universities(Nos.2022JCCXHH09 and 2022YJSHH01)the Yueqi Outstanding Scholar award of CUMTB+3 种基金the National Key R&D Program of China(No.SQ2022YFC2900065)the Ordos Science&Technology Plan(No.202204)the National Natural Science Foundation of China(No.52274283)the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2107)。
文摘In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite.
文摘In the present study we reported the feasibility of the Anethum graveolens as biosorbent to remove Pb(II) from aqueous solutions. Anethum graveolens was characterized by scanning electron microscopy and elemental analysis. The ability of Anethum graveolens to adsorb Pb(II) was investigated by using batch adsorption procedure. The effects such as pH, contact time, adsorbate concentration and biosorbent dosage on the adsorption capacity were studied. The experimental data were analysed using various adsorption kinetic models viz., the pseudo-first and second-order equations, Bangham’s equation, intraparticle diffusion and Elovich models. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process. The equilibrium nature of Pb(II) adsorption at 30℃ has been described by the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherm models. The equilibrium data fit well on Langmuir isotherm. The monolayer adsorption capacity of Pb(II) onto Anethum graveolens as obtained from Langmuir isotherm at 30℃ was found to be 303 mg/g. This high adsorption capacity of Anethum graveolens places this biosorbent as one of the best adsorbents for removal of Pb(II) from aqueous effluents.
文摘In this research dobera leaves (DL), an agricultural waste, available in large quantity in south region of Saudi Arabia, were used as low-cost adsorbent for removal of metal ions such as Pb(II). Batch operation was used to study the equilibrium behavior of DL. The effects of initial concentration of Pb(II), solution pH, contact time and adsorbent dose were evaluated. To study the kinetics of adsorption of Pb(II) onto DL, pseudo-first-order, pseudo-second-order and intra-particle diffusion were used. Adsorption process undergoes pseudo-second-order kinetic as proved by the high value of R2. Furthermore, to design the equilibrium data of adsorption of process, four adsorption isotherm models such as Langmuir, Freundlich Temkin and Dubinin-Radushkevich (D-R) were used. It is found that Langmuir equation has the highest value of R2 (0.999) compared with other models. In presences of a mixture of Pb(II)/Ni(II), DL were found to be selective for Pb(II) ions with a high adsorptive capacity of 83 mg/g and show favorable adsorption with RL < 1. In addition, preliminary results indicate that DL are very effective adsorbent for the removal of Pb(II) ions (>90%) from drinking water with less competition of other ions present in water.
基金the National Natural Science Foundation of China(No.51964027)the Yunnan Province Applied Basic Research Project,China(No.2017FB084)+1 种基金the Foundation of Yunnan’s Education Ministry,China(No.2019J0037)the Testing and Analyzing Funds of Kunming University of Science and Technology(No.2018T20150055).
文摘To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation,the reaction behaviors of Pb and Zn sulfates during this process were investigated.Chemical analysis showed that the transformation ratios of PbSO4 and ZnSO4 could reach 65.51%and 52.12%,respectively,after reduction roasting,and the introduction of a sulfidation agent could improve the transformation ratios of these sulfates.scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)revealed that temperature obviously affects the particle size,crystal growth,and morphology of the artificial Pb and Zn sulfide minerals.Particle size analysis demonstrated that the particle size of the materials increases after roasting.Flotation tests revealed that a flotation concentrate composed of 12.01wt%Pb,27.78wt%Zn,and 6.975×10^(−2)wt%Ag with recoveries of 60.54%,29.24%,and 57.64%,respectively,could be obtained after roasting.
文摘This work examined the removal of Pb(II) using a chitosan derivative (SB, synthesized from benzaldehyde) assisted by a magnetic field. The adsorption capacity for Pb(II) was investigated. It was found that 1) the pH and concentration of the ion solution, as well as exposure time and strength of magnetic field, affected the degree of adsorption;and 2) studies of the adsorption isotherms and kinetics of ions onto SB revealed that SB showed enhanced adsorption capacity towards Pb(II) ions in a magnetic field compared with magnetically untreated samples. The Langmuir and Freundlich isotherm were applied to describe the experimental adsorption, and the maximum adsorption capacity of SB for Pb(II) was 2.5040 mg/g, when assisted by a magnetic field of 480 kA/m.
基金Supported by the Natural Science Foundation of Qinghai Province(Nos.2020-ZJ-940Q,2014-ZJ-937Q)the West Light Foundation of the Chinese Academy of Sciences(No.E010GC09)the Youth Innovation Promotion Association CAS(No.E010GC15)。
文摘Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.
文摘Chemical compositions of natural zeolites, porcelanite (opal-CT) and local sands were determined by X-ray fluorescence (XRF) and correlated with their Pb(II) removal efficiencies. Zeolites and porcelanite were from the Mikawer, Aritain and Hannon areas in Jordan. Sands (white, red and yellow) were from the United Arab Emirates (UAE). The effect of Pb(II) concentration and zeolite dosage on removal efficiency was investigated at 25.0°C using the batch equilibrium method. Commercial kaolinite, silica and alumina were also studied for comparison. Removal efficiencies, in mg Pb(II)/g adsorbent, were: 76.9, 52.7 and 42.1 for Hannon, Mikawer and Aritain zeolites, respectively;58.2 for porcelanite;29.7, 11.0 and 8.5 for yellow, red and white sand, respectively;7.2, 3.3 and 1.3 for kaolinite, silica and alumina, respectively. XRF data indicate that adsorbents with intermediate molar ratios of Si/Al, in the range 2.70 - 2.93, are most efficient in Pb(II) removal. Scanning electron microscope (SEM) images of adsorbents suggest that morphology, in addition to chemical composition, plays a key role. In particular, a combination of factors, including shapes and sizes of crystals, channels in zeolites and pores in porcelanite, appear to favor removal of Pb(II).
文摘The kinetics and stoichiometry of the reduction of H2O2 by an aminocaboxylactocobaltate(II) complex (hereafter[CoHEDTAOH2]-) in aqueous medium have been studied under the following conditions: T = 29℃ ± 1℃, Ionic Strength, I = 0.50 mol dm-3 (NaClO4), [H+] = 1 × 10-3 mol dm-3. The ratio from the stoichiometric study conforms to the equation 2[CoHEDTAOH2]- + H2O2 + 2H+ → 2 [CoHEDTAOH2] + 2H2O. The rate of reaction varied linearly to the first power of the concentrations of the reductant and oxidant and displayed inverse dependence on acid concentration. The plot of acid dependent rate constant versus [H+]-1 was linear with zero intercept. The [CoHEDTAOH2]- - H2O2 reaction was insensitive to the change in ionic strength of the medium suggesting interaction of charged and uncharged species at the activated complex. The Michaelis-Menten plot of was linear without intercept which suggested absence of intermediate complex. Evidences in this paper showed that the reaction occurred through the outer-sphere mechanism.
基金the National Natural Science Foundation of China (Grant No. 50408024)Zhejiang Provincial Natural Science Foundation of China(Grant No. M203034 and Y505036).
文摘The electrochemical reduction of CO2 on a Pb electrode was investigated in 0. 1 mol/L KOH/methanol electrolyte at different temperatures and pressures. A graphite electrode was employed as the counter electrode, and an AglAgCl (sat. KCl) electrode was used as the reference electrode. The Tafel plots of the products by the electrochemical reduction of CO2 showed that the formation process of HCOOH differed from that of CO and the reduction of CO2was not limited by the diffusion of CO2 in the investigated potential range. Kinetic analysis indicated that the reaction orders were 0. 573 for electrochemical reduction of CO2 to CO and 0. 671 for CO2 to HCOOH in the cathodic direction.
文摘Influence of Hg(II) and Pb(II) ions on C-Phycocyanin (C-PC) from cyanobacteria Spirulina platensis was investigated using Fluorescence spectroscopy. Fluorescence measurements demonstrate quenching of C-PC emission by Hg(II) and Pb(II), and blue shifts in the fluorescence spectra. The effect of DNA on the fluorescence of Hg(II)-and Pb(II)-C-PC (from Spirulina platensis) complexes was also studied. It was shown that the fluorescence intensity of Hg-C-PC after addition of DNA gave rise to the fluorescence buildup. At the same time, addition of DNA to the Pb(II)-C-PC complexes showed no such effect. In the case of Hg(II)-C-PC, fluorescence intensity significantly decreases in time, while for Pb(II)-C-PC, decrease of the fluorescence intensity is not significant, but blue shift of the peak takes place.
文摘In this study, the modified rice bran was tested to remove Pb(II) from water. Batch experiments were carried out to evaluate the adsorption characteristics of the modified rice bran for Pb(II) removal from aqueous solutions. The adsorption isotherms, thermodynamic parameters, kinetics, pH effect, and desorbability were examined. The results show that the maximum adsorption capacity of the modified rice bran was approximately 70.8 mg Pb(II)/g absorbent at temperature of 25℃ and at the initial Pb(II) concentration of 400 mg/L and pH 7.0. And the adsorption isotherm data could be well fitted by both Langmuir equation and Freundlich equation. Thermodynamic studies confirmed that the process was spontaneous and endothermic. The adsorbed amounts of Pb(II) tend to increase with the increase of pH. The adsorption kinetic data can be satisfactorily described by either of the power functions and simple Elovich equations. The desorbability of Pb(II) is about 15-20%, and it is relatively difficult for the adsorbed Pb(II) to be desorbed. The relatively low cost and high capabilities of the rice bran make it potentially attractive adsorbent for the removal of Pb(II) from wastewater.
基金Science and Technical Department Innovation Fund and Graduate Student Innovation Project of Jiangsu Province.
文摘Based on the advantage of high surface area and strong adsorption ability of potassium hexatitanate whisker, a method to determine trace Pb(II) content by combining solid phase extraction with Flame atomic absorption spectrometry (FAAS) was established. The adsorptive behavior of potassium hexatitanate whisker to Pb(II), primary influencing factors of adsorption and elution and effect of coexistence ions were investigated systemically. The optimal analytical conditions were discussed and examined. It was found that the adsorption rate of potassium hexatitanate whisker to Pb(II) was 100% at pH 4.0. Pb(II) could be eluted from potassium tetratitanate whisker with HCl (2mol/L) under boiling water for 30min. The detection limit was 5.75ng/mL, and relative standard deviation was 1.66% (n=9, CPb=2.0μg/mL).
文摘The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid