期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
l^(2) Decoupling for Certain Surfaces of Finite Type in R^(3)
1
作者 Zhuo Ran LI Ji Qiang ZHENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第8期1442-1458,共17页
In this article,we establish an 2 decoupling inequality for the surface F_(4)^(2):={(ξ1,ξ2,ξ_(1)^(4)+ξ_(2)^(4)):(ξ1,ξ2)∈[0,1]^(2)}associated with the decomposition adapted to finite type geometry from our previ... In this article,we establish an 2 decoupling inequality for the surface F_(4)^(2):={(ξ1,ξ2,ξ_(1)^(4)+ξ_(2)^(4)):(ξ1,ξ2)∈[0,1]^(2)}associated with the decomposition adapted to finite type geometry from our previous work[Li,Z.,Miao,C.,Zheng,J.:A restriction estimate for a certain surface of finite type in R^(3).J.Fourier Anal.Appl.,27(4),Paper No.63,24 pp.(2021)].The key ingredients of the proof include the so-called generalized rescaling technique,an l^(2) decoupling inequality for the surfaces{(ξ1,ξ2,φ1(ξ1)+ξ42):(ξ1,ξ2)∈[0,1]^(2)}with φ1 being non-degenerate,reduction of dimension arguments and induction on scales. 展开更多
关键词 Decoupling inequality finite type reduction of dimension arguments induction on scales
原文传递
L^(2)Schrödinger Maximal Estimates Associated with Finite Type Phases in R^(2)
2
作者 Zhuo Ran LI Jun Yan ZHAO Teng Fei ZHAO 《Acta Mathematica Sinica,English Series》 SCIE 2024年第11期2809-2839,共31页
In this paper,we establish Schrödinger maximal estimates associated with the finite type phaseФ(ξ_(1),ξ_(2)):=ξ_(1)^(m)+ξ_(2)^(m),where m≥4 is an even number.Following[12],we prove an L2 fractal restriction... In this paper,we establish Schrödinger maximal estimates associated with the finite type phaseФ(ξ_(1),ξ_(2)):=ξ_(1)^(m)+ξ_(2)^(m),where m≥4 is an even number.Following[12],we prove an L2 fractal restriction estimate associated with the surface{(ξ_(1),ξ_(2),Ф(ξ_(1),ξ_(2))):(ξ_(1),ξ_(2)∈[0,]^(2)}as the main result,which also gives results on the average Fourier decay of fractal measures associated with these surfaces.The key ingredients of the proof include the rescaling technique from[16],Bourgain-Demeter’sℓ^(2)decoupling inequality,the reduction of dimension arguments from[17]and induction on scales.We notice that our Theorem 1.1 has some similarities with the results in[8].However,their results do not cover ours.Their arguments depend on the positive definiteness of the Hessian matrix of the phase function,while our phase functions are degenerate. 展开更多
关键词 Pointwise convergence finite type decoupling reduction of dimension arguments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部