Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (...Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments.展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0200101)the National Natural Science Foundation of China(51325205,51290273,and51521091)Chinese Academy of Sciences(KGZD-EW-303-1,KGZDEW-T06,174321KYSB20160011,and XDPB06)
文摘Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments.