期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Nonmetallic modified zero-valent iron for remediating halogenated organic compounds and heavy metals: A comprehensive review
1
作者 Zimin Yan Jia Ouyang +4 位作者 Bin Wu Chenchen Liu Hongcheng Wang Aijie Wang Zhiling Li 《Environmental Science and Ecotechnology》 SCIE 2024年第5期34-46,共13页
Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising... Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies. 展开更多
关键词 Nonmetallic modified zero-valent iron Halogenated organic compounds Heavy metals Reductive removal Regulation strategies Electron selectivity
原文传递
Removal of impurities from scandium chloride solution using 732-type resin 被引量:7
2
作者 Guotao Zhou Qinggang Li +4 位作者 Pan Sun Wenjuan Guan Guiqing Zhang Zuoying Cao Li Zeng 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期311-316,共6页
The deep removal of Al, Fe(Ⅱ/Ⅲ), Ca, Zr, Ti and Si from scandium chloride solution was carried out by using 732-type strong acid cation exchange resin. The effects of pH value, contact time and complexing agents(... The deep removal of Al, Fe(Ⅱ/Ⅲ), Ca, Zr, Ti and Si from scandium chloride solution was carried out by using 732-type strong acid cation exchange resin. The effects of pH value, contact time and complexing agents(EDTA) on the purification process are investigated. The results indicate that the 732-type resin have a good scandium selectivity and the adsorption order is Sc 〉 Fe(Ⅲ)〉Al 〉 Ca 〉 Zr 〉 Ti 〉 Si in the pH range of 1-3. The separation of Sc and Zr, Si, Ti can be directly carried out because the resin have a good adsorption effect on Sc, AI and Fe(Ⅲ) but poor adsorption effect on Zr, Si and Ti under the condition of pH = 2.5 and contact time 180 min. The Fe(Ⅱ), Ca and Al are selectively adsorbed on the resin by adding reducing agent ascorbic acid and EDTA into the solution for reducing Fe(Ⅲ) to Fe(Ⅱ) and complexing Sc.By using two-step ion exchange adsorption separation method, the removal rates of Fe(Ⅲ), Ti, Al, Ca, Zr and Si are 95.5%,99.8%,100%,98.2%,98.6% and 100%,respectively. 展开更多
关键词 Scandium Ion exchange removal Impurity reduction Rare earths
原文传递
Nb_2O_5 nanowires in-situ grown on carbon fiber: A high-efficiency material for the photocatalytic reduction of Cr(Ⅵ) 被引量:2
3
作者 Yucheng Du Shihao Zhang +2 位作者 Jinshu Wang Junshu Wu Hongxing Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期358-367,共10页
Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of ... Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability. 展开更多
关键词 Carbon fiber Niobium oxide nanowire Photocatalytic reduction Cr(Ⅵ) removal Adsorption efficiency
原文传递
Rapid degradation of dyes in water by magnetic Fe^0/Fe_3O_4/graphene composites 被引量:5
4
作者 Shan Chong Guangming Zhang +1 位作者 Huifang Tian He Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第6期148-157,共10页
Magnetic Fe^0/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption–desorption, scan... Magnetic Fe^0/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption–desorption, scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), vibrating-sample magnetometer(VSM) measurements and X-ray photoelectron spectroscopy(XPS). The results indicated that Fe^0/Fe3O4/graphene had a layered structure with Fe crystals highly dispersed in the interlayers of graphene, which could enhance the mass transfer process between Fe^0/Fe3O4/graphene and pollutants. Fe^0/Fe3O4/graphene exhibited ferromagnetism and could be easily separated and re-dispersed for reuse in water. Typical dyes, such as Methyl Orange, Methylene Blue and Crystal Violet, could be decolorized by Fe^0/Fe3O4/graphene rapidly. After 20 min, the decolorization efficiencies of methyl orange, methylene blue and crystal violet were 94.78%, 91.60% and 89.07%, respectively. The reaction mechanism of Fe^0/Fe3O4/graphene with dyes mainly included adsorption and enhanced reduction by the composite. Thus, Fe^0/Fe3O4/graphene prepared by the one-step reduction method has excellent performance in removal of dyes in water. 展开更多
关键词 Fe^0/Fe3O4/graphene Magnetic Dyes removal reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部