期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Study of DTC-Power Electronic Cascade Fed by Photovoltaic Cell-Three-Level NPC Inverter
1
作者 Iqbal Messaif El-Madjid Berkouk Nadia Saadia 《Smart Grid and Renewable Energy》 2010年第3期109-118,共10页
This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can als... This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can also convert the photovoltaic DC power into high quality AC power. Attention has been paid to the problem of neutral point potential variation. In this way, a Direct Torque Control (DTC) technique has been applied and the estimated value of the Neutral Point Potential (NPP) is used, which is calculated by motor currents. This control strategy uses the redundancy presented by the inverter for selecting appropriate switching state through a switching table to achieve the control of NPP. This study shows the effect of the stability problem of the DC voltages and good static and dynamic performances were obtained in simulation of the proposed cascade “photovoltaic cell-three-level NPC VSI-induction motor”. 展开更多
关键词 DTC Switching Table NPC Three-Level Inverter Photovoltaic Neutral Point Potential Redundant states
下载PDF
Minimal Realization of Linear Graph Models for Multi-physics Systems
2
作者 Clarence W.DE SILVA 《Instrumentation》 2019年第4期72-84,共13页
An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.Th... An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.The present paper concerns the use of linear graphs(LGs)to generate a minimal model for a multi-physics system.A state-space model has to be a minimal realization.Specifically,the number of state variables in the model should be the minimum number that can completely represent the dynamic state of the system.This choice is not straightforward.Initially,state variables are assigned to all the energy-storage elements of the system.However,some of the energy storage elements may not be independent,and then some of the chosen state variables will be redundant.An approach is presented in the paper,with illustrative examples in the mixed fluid-mechanical domains,to illustrate a way to recognize dependent energy storage elements and thereby obtain a minimal state-space model.System analysis in the frequency domain is known to be more convenient than in the time domain,mainly because the relevant operations are algebraic rather than differential.For achieving this objective,the state space model has to be converted into a transfer function.The direct way is to first convert the state-space model into the input-output differential equation,and then substitute the time derivative by the Laplace variable.This approach is shown in the paper.The same result can be obtained through the transfer function linear graph(TF LG)of the system.In a multi-physics system,first the physical domains have to be converted into an equivalent single domain(preferably,the output domain of the system),when using the method of TFLG.This procedure is illustrated as well,in the present paper. 展开更多
关键词 Multi-physics Modelling Mechatronic Systems Linear Graphs Dependent Energy Storage Elements Redundant state Variables Minimal state-space Realization Domain Conversion Equivalent Models Frequency-domain Model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部