Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
Given sustaining exploration, the eastern zone of the Sulige gas field may soon become a key area of exploitation. In order to explore its genesis, types and distribution of the reservoir sandstones in the eastern zon...Given sustaining exploration, the eastern zone of the Sulige gas field may soon become a key area of exploitation. In order to explore its genesis, types and distribution of the reservoir sandstones in the eastern zone of this gas field, we focused in our study on the provenance and detailed sedimentary facies of sandstone of the He8 (the eighth part of the Shihezi formation, Permian system) and Shanxil (the first part of the Shanxi formation, Permian system) members, based on core observations, analyses in petrography, granularity and logging. The results show that: 1) the sandstone provenance of Shanxil and He8 in the eastern zone of the Sulige gas field is from the north of the Ordos Basin, characterized by dual directions from the north and northeast. 2) The He8 and Shanxil members were deposited in a fluvial-delta sedimentary system. The He8 was mainly deposited in braided rivers, in- cluding braided channels, channel bars, levee and floodplain sub-environments, whereas the Shanxil Member was deposited in braided rivers and deltas, including braided channels, channel bars, floodplains, tributaries and inter-tributary sub-environments. 3) Sedimentary facies bands migrated in drastic fashion towards the basin from the Shanxil to the He8 Member. Base levels of sedi- mentation generally present a trend of small increases in-amplitude, large decreasing amplitudes and slow and gradual Increases. 4) The continuity of the reservoir sandbodies along the source direction is better than that perpendicular to the direction. Compared with Shanxil, both dimensions and continuity of the sandbodies in He8 are better from which we conclude that it is the most fa- vorable part of the reservoir.展开更多
Volcanic rocks of the late Mesozoic are very important reservoirs for the commercial natural gases including hydrocarbon, carbon dioxide and rare gases in the northern Songliao Basin. The reservoir volcanic rocks incl...Volcanic rocks of the late Mesozoic are very important reservoirs for the commercial natural gases including hydrocarbon, carbon dioxide and rare gases in the northern Songliao Basin. The reservoir volcanic rocks include rhyolite, andesite, Wachyte, basalt and tuff. Facies of the volcanic rocks can be classified into 5 categories and 15 special types. Porosity and permeability of the volcanic reservoirs arc facies-controlled, Commercial reservoirs were commonly found among the following volcanic subfacics: volcanic neck (Ⅰ1), underground-explosive breccia (Ⅰ3), pyroclastic-bcaring lava flow (Ⅱ3), upper effusivc (Ⅲ3) and inner extrusive ones ( Ⅳ1). The best volcanic reservoirs arc generally evolved in the interbedded explosive and effusivc volcanics. Rhyolites show in general better reservoir features than other types of rocks do.展开更多
In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary faci...In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary facies and diagenesis were conducted by means of analysis of cores, thin sections, fluid inclusions, X-ray diffraction, cathode luminescence and scanning electron microscope. It was found that the sand bodies of the major gas reservoirs in the Shan1 section (P1S1) and the He8 section (P2H8) were formed during the Permian as sedimentary facies such as braided-channel bars, braided-river channels and point bars of a meandering river. Four types of diagenetic facies developed subsequently: in order from the best to the poorest properties these are type A (weak compaction, early calcite cement-chlorite film facies), type B (moderate compaction, quartz overgrowth-feldspar corrosion-kaolinite filling facies), type C (strong compaction, late calcite cement-quartz corrosion facies) and type D (matrix filling and strong compaction facies). This diagenesis is undoubtedly the main reason for the poor reservoir properties of sandstone reservoirs, but the sedimentary facies are the underlying factors that greatly affect the diagenesis and thus the reservoir performance. Favorable diagenetic facies developed mainly in relatively small lithofacies such as braided-river channels, channel bars and point bars. The vertical distribution of the physical properties and the diagenetic facies of the reservoirs are related to the stratigraphic succession. Most of the sandstones between mudstones and thin beds of sandstone are unfavorable diagenetic facies. Analyses indicate that siliceous cementation can hardly be stopped by hydrocarbon filling. Authigenic chlorite could hardly protect the primary porosity. It not only occupies pore space, but also blocks pathways through sandstone reservoirs, so that it has significant influence on the permeability. Authigenic chlorite cannot be used as a marker for a specific sedimentary facies because it can be formed in different sedimentary facies, but it indicates high hydrodynamic conditions and presence of favorable reservoirs.展开更多
In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and d...In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and diagenetic evolution caused the Changxing Formation to form lithologic traps, with good reservoirs such as dissolved bioclastic dolostone and dissolved pore dolostone. The Changxing Formation gas reservoir is a pseudo-layered porous lithologic gas reservoir under pressure depletion drive, with high H2S and moderate CO2 contents. This paper predictes that the conducting system for the Changxing Formation gas reservoir is possibly composed of the pores and microfractures in the Changxing Formation reservoir, the top erosional surface of the Changxing Formation, as well as the micropores and microfractures in the underlying formations. The Changxing Formation reservoir has experienced 3 hydrocarbon charging stages. This paper suggests that diffusion is the major formation mechanism for this gas reservoir. In the Middle and Late Yanshanian, the Yuanba area entered the major gas charging stage. The gas migrated mainly through diffusion and with the assistance of seepage flow in small faults and microfractures from the source rocks and the other oil-bearing strata to the Changxing Formation carbonate reservoir rocks, forming lithologic gas pools. In the Himalayan Epoch, the lithologic traps were uplifted as a whole without strong modification or overlapping, and were favorable for gas preservation.展开更多
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec...The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.展开更多
Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Sha...Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.展开更多
Based on seismic, drilling data and experimental analysis, the characteristics and main controlling factors of shoal dolomite gas reservoir in the third member of Ordovician Yingshan Formation of Gucheng area, Tarim b...Based on seismic, drilling data and experimental analysis, the characteristics and main controlling factors of shoal dolomite gas reservoir in the third member of Ordovician Yingshan Formation of Gucheng area, Tarim basin were examined.The study shows that the dolomite gas reservoir in Gucheng area is lithologic gas reservoir controlled by shoal and fault jointly,and its formation is mainly attributed to the following factors:(1) The continuously developing paleotectonic structure has been in the direction of gas migration and accumulation;(2) The large area of medium-high energy grain bank deposited in gentle slope environment is the material basis for the formation of dolomite reservoir;(3) Atmospheric water leaching and dolomitization and fluid dissolution in fault zone are the key factors for the formation of high-quality dolomite reservoir;(4)The natural gas comes from cracking of the ancient oil reservoir and hydrocarbon generation of dispersed organic matter in source rocks, and the NNE-trending strike-slip fault is the dominant channel for vertical migration of natural gas;(5) Limestone cap rocks in the first and second members of Yingshan Formation provide direct sealing for the formation of gas reservoir there. On the basis of comprehensive analysis, it is pointed out that the Gucheng area has three grain shoal zones in the third member of Yingshan Formation in nearly S-N direction, which together with seven strike-slip fault zones in NNE direction control the development of shoal dolomite gas reservoir.展开更多
Basic characteristics of Ordovician carbonate reservoir beds in the Lungudong region of northeastern part of the Tarim Basin are described in detail and the reservoir-forming conditions of oil and gas are preliminaril...Basic characteristics of Ordovician carbonate reservoir beds in the Lungudong region of northeastern part of the Tarim Basin are described in detail and the reservoir-forming conditions of oil and gas are preliminarily discussed in this paper by collecting and sorting out a large amount of data. The carbonate reservoir beds are mainly developed in open-platform and platform marginal facies; the reservoir beds have large changes in and low average values of physical property; the main type is fractured reservoir beds with the fracture-porous type second. The reservoir bed development is chiefly controlled by the distribution of sedimentary facies, tectonic activity and karstification. Whereas the accumulation and distribution of hydrocarbons in the region are controlled by an advantageous structural location, a good reservoir-caprock combination and a favorable transporting system, with the distribution characterized by zones horizontally and belts vertically, the oil and gas are mainly concentrated in areas with structural uplift, densely developed fractures, and surface karst, a vertical vadose zone, and a horizontal undercurrent belt of palaeokarst.展开更多
The Junggar Basin is one of the major petroliferous basins with abundant oil and gas resources in onshore China.Around 2010 and thereafter,the hydrocarbon exploration for finding giant fields in the basin faced tough ...The Junggar Basin is one of the major petroliferous basins with abundant oil and gas resources in onshore China.Around 2010 and thereafter,the hydrocarbon exploration for finding giant fields in the basin faced tough difficulties:in the northwestern margin area,no significant breakthrough has been made for long since seeking to"escape from the step-fault zone and extend to the slope area";in the central part,the exploration for large lithologic-stratigraphic reservoirs stood still;since the discovery of the Kelameili gas field,no important achievement has been made in gas exploration.Under the guidance of"whole sag-oil-bearing"theory in the petroliferous basin,and based on the long-term study and thinking of the petroleum accumulation conditions and characteristics,the authors proposed several new concepts,i.e.,a"thrust-induced second-order fault step"hiding under the northwestern slope area;six"hydrocarbon migrationward surfaces"favorable for hydrocarbon accumulation;promising natural gas resource.These concepts have played an important role in the discoveries of Wells Mahu1 and Yanbei1 as well as the confirmation and expansion of Permian-Triassic billion-ton-scale petroliferous areas in Mahu.The fairway of new discoveries has also appeared for natural gas exploration in Wells Fu26,Gaotan1 and Qianshao2,suggesting that the surrounding regions of the highly matured source kitchen are of high possibility to form gas accumulations.展开更多
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
基金supported by the National Basic Re-search Program of China (No2003CB214603)
文摘Given sustaining exploration, the eastern zone of the Sulige gas field may soon become a key area of exploitation. In order to explore its genesis, types and distribution of the reservoir sandstones in the eastern zone of this gas field, we focused in our study on the provenance and detailed sedimentary facies of sandstone of the He8 (the eighth part of the Shihezi formation, Permian system) and Shanxil (the first part of the Shanxi formation, Permian system) members, based on core observations, analyses in petrography, granularity and logging. The results show that: 1) the sandstone provenance of Shanxil and He8 in the eastern zone of the Sulige gas field is from the north of the Ordos Basin, characterized by dual directions from the north and northeast. 2) The He8 and Shanxil members were deposited in a fluvial-delta sedimentary system. The He8 was mainly deposited in braided rivers, in- cluding braided channels, channel bars, levee and floodplain sub-environments, whereas the Shanxil Member was deposited in braided rivers and deltas, including braided channels, channel bars, floodplains, tributaries and inter-tributary sub-environments. 3) Sedimentary facies bands migrated in drastic fashion towards the basin from the Shanxil to the He8 Member. Base levels of sedi- mentation generally present a trend of small increases in-amplitude, large decreasing amplitudes and slow and gradual Increases. 4) The continuity of the reservoir sandbodies along the source direction is better than that perpendicular to the direction. Compared with Shanxil, both dimensions and continuity of the sandbodies in He8 are better from which we conclude that it is the most fa- vorable part of the reservoir.
文摘Volcanic rocks of the late Mesozoic are very important reservoirs for the commercial natural gases including hydrocarbon, carbon dioxide and rare gases in the northern Songliao Basin. The reservoir volcanic rocks include rhyolite, andesite, Wachyte, basalt and tuff. Facies of the volcanic rocks can be classified into 5 categories and 15 special types. Porosity and permeability of the volcanic reservoirs arc facies-controlled, Commercial reservoirs were commonly found among the following volcanic subfacics: volcanic neck (Ⅰ1), underground-explosive breccia (Ⅰ3), pyroclastic-bcaring lava flow (Ⅱ3), upper effusivc (Ⅲ3) and inner extrusive ones ( Ⅳ1). The best volcanic reservoirs arc generally evolved in the interbedded explosive and effusivc volcanics. Rhyolites show in general better reservoir features than other types of rocks do.
基金supported by the major national special projects for technology:Enrichment Regularity and Distribution Prediction for Hydrocarbon of Key Clastic Rocks in Central and Western Regions (Approval No.: 2011ZX05002-006)National Natural Science Foundation of China (Approval No.: 41372135 and 41402120)Research and Innovation Team Plan Fund of Shandong University of Science and Technology (Approval No.: 2010KYTD103)
文摘In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary facies and diagenesis were conducted by means of analysis of cores, thin sections, fluid inclusions, X-ray diffraction, cathode luminescence and scanning electron microscope. It was found that the sand bodies of the major gas reservoirs in the Shan1 section (P1S1) and the He8 section (P2H8) were formed during the Permian as sedimentary facies such as braided-channel bars, braided-river channels and point bars of a meandering river. Four types of diagenetic facies developed subsequently: in order from the best to the poorest properties these are type A (weak compaction, early calcite cement-chlorite film facies), type B (moderate compaction, quartz overgrowth-feldspar corrosion-kaolinite filling facies), type C (strong compaction, late calcite cement-quartz corrosion facies) and type D (matrix filling and strong compaction facies). This diagenesis is undoubtedly the main reason for the poor reservoir properties of sandstone reservoirs, but the sedimentary facies are the underlying factors that greatly affect the diagenesis and thus the reservoir performance. Favorable diagenetic facies developed mainly in relatively small lithofacies such as braided-river channels, channel bars and point bars. The vertical distribution of the physical properties and the diagenetic facies of the reservoirs are related to the stratigraphic succession. Most of the sandstones between mudstones and thin beds of sandstone are unfavorable diagenetic facies. Analyses indicate that siliceous cementation can hardly be stopped by hydrocarbon filling. Authigenic chlorite could hardly protect the primary porosity. It not only occupies pore space, but also blocks pathways through sandstone reservoirs, so that it has significant influence on the permeability. Authigenic chlorite cannot be used as a marker for a specific sedimentary facies because it can be formed in different sedimentary facies, but it indicates high hydrodynamic conditions and presence of favorable reservoirs.
基金supported by the National Major Fundamental Research and Development project(No. 2005CB422100)the project of Southern Exploration Division Company,SINOPEC
文摘In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and diagenetic evolution caused the Changxing Formation to form lithologic traps, with good reservoirs such as dissolved bioclastic dolostone and dissolved pore dolostone. The Changxing Formation gas reservoir is a pseudo-layered porous lithologic gas reservoir under pressure depletion drive, with high H2S and moderate CO2 contents. This paper predictes that the conducting system for the Changxing Formation gas reservoir is possibly composed of the pores and microfractures in the Changxing Formation reservoir, the top erosional surface of the Changxing Formation, as well as the micropores and microfractures in the underlying formations. The Changxing Formation reservoir has experienced 3 hydrocarbon charging stages. This paper suggests that diffusion is the major formation mechanism for this gas reservoir. In the Middle and Late Yanshanian, the Yuanba area entered the major gas charging stage. The gas migrated mainly through diffusion and with the assistance of seepage flow in small faults and microfractures from the source rocks and the other oil-bearing strata to the Changxing Formation carbonate reservoir rocks, forming lithologic gas pools. In the Himalayan Epoch, the lithologic traps were uplifted as a whole without strong modification or overlapping, and were favorable for gas preservation.
文摘The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.
基金China National Science and Technology Major Project(2017ZX05035).
文摘Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.
基金Supported by the National Natural Science Foundation of China(Grant No.U20A201009 and 41972157)PetroChina Science and Technology Major Project(Grant No.2016E-0204)。
文摘Based on seismic, drilling data and experimental analysis, the characteristics and main controlling factors of shoal dolomite gas reservoir in the third member of Ordovician Yingshan Formation of Gucheng area, Tarim basin were examined.The study shows that the dolomite gas reservoir in Gucheng area is lithologic gas reservoir controlled by shoal and fault jointly,and its formation is mainly attributed to the following factors:(1) The continuously developing paleotectonic structure has been in the direction of gas migration and accumulation;(2) The large area of medium-high energy grain bank deposited in gentle slope environment is the material basis for the formation of dolomite reservoir;(3) Atmospheric water leaching and dolomitization and fluid dissolution in fault zone are the key factors for the formation of high-quality dolomite reservoir;(4)The natural gas comes from cracking of the ancient oil reservoir and hydrocarbon generation of dispersed organic matter in source rocks, and the NNE-trending strike-slip fault is the dominant channel for vertical migration of natural gas;(5) Limestone cap rocks in the first and second members of Yingshan Formation provide direct sealing for the formation of gas reservoir there. On the basis of comprehensive analysis, it is pointed out that the Gucheng area has three grain shoal zones in the third member of Yingshan Formation in nearly S-N direction, which together with seven strike-slip fault zones in NNE direction control the development of shoal dolomite gas reservoir.
基金supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202308)
文摘Basic characteristics of Ordovician carbonate reservoir beds in the Lungudong region of northeastern part of the Tarim Basin are described in detail and the reservoir-forming conditions of oil and gas are preliminarily discussed in this paper by collecting and sorting out a large amount of data. The carbonate reservoir beds are mainly developed in open-platform and platform marginal facies; the reservoir beds have large changes in and low average values of physical property; the main type is fractured reservoir beds with the fracture-porous type second. The reservoir bed development is chiefly controlled by the distribution of sedimentary facies, tectonic activity and karstification. Whereas the accumulation and distribution of hydrocarbons in the region are controlled by an advantageous structural location, a good reservoir-caprock combination and a favorable transporting system, with the distribution characterized by zones horizontally and belts vertically, the oil and gas are mainly concentrated in areas with structural uplift, densely developed fractures, and surface karst, a vertical vadose zone, and a horizontal undercurrent belt of palaeokarst.
基金Supported by National Science and Technology Major Project(2017ZX5001).
文摘The Junggar Basin is one of the major petroliferous basins with abundant oil and gas resources in onshore China.Around 2010 and thereafter,the hydrocarbon exploration for finding giant fields in the basin faced tough difficulties:in the northwestern margin area,no significant breakthrough has been made for long since seeking to"escape from the step-fault zone and extend to the slope area";in the central part,the exploration for large lithologic-stratigraphic reservoirs stood still;since the discovery of the Kelameili gas field,no important achievement has been made in gas exploration.Under the guidance of"whole sag-oil-bearing"theory in the petroliferous basin,and based on the long-term study and thinking of the petroleum accumulation conditions and characteristics,the authors proposed several new concepts,i.e.,a"thrust-induced second-order fault step"hiding under the northwestern slope area;six"hydrocarbon migrationward surfaces"favorable for hydrocarbon accumulation;promising natural gas resource.These concepts have played an important role in the discoveries of Wells Mahu1 and Yanbei1 as well as the confirmation and expansion of Permian-Triassic billion-ton-scale petroliferous areas in Mahu.The fairway of new discoveries has also appeared for natural gas exploration in Wells Fu26,Gaotan1 and Qianshao2,suggesting that the surrounding regions of the highly matured source kitchen are of high possibility to form gas accumulations.