Contrary to natural cavitation,ventilated cavitation is controllable and is not harmful.It is particularly used to reduce the drag of the hydraulic vehicles.The ventilated cavitation is characterized by various gas re...Contrary to natural cavitation,ventilated cavitation is controllable and is not harmful.It is particularly used to reduce the drag of the hydraulic vehicles.The ventilated cavitation is characterized by various gas regimes.The mechanisms of ventilated cavitation are investigated in the present work with CFD based on a 2D solver.The attention is especially focused on the transition between the reentrant jet and twin vortex regimes.The results confirmthat the product of ventilated cavitation number and Froude number is lower than 1(σcFr<1)in the twin vortex regime,while it is higher than 1(σcFr>1)in the reentrant jet regime,as reported in the literature.Further analysis shows that ventilated cavitation is significantly influenced by the natural cavitation number.展开更多
To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-...To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.展开更多
A visualized investigation was carried out on the effect of the diverging angle on the bubble motion and interfacial behavior in a Venturi-type bubble generator.It was found two or three large vortexes formed in the d...A visualized investigation was carried out on the effect of the diverging angle on the bubble motion and interfacial behavior in a Venturi-type bubble generator.It was found two or three large vortexes formed in the diverging section,resulting in strong reentrant jet flow in the front of the bubbles or slugs rushing out of the throat.The jet flow in return bumps into the ongoing bubbles or slugs,leading to strong interaction between the gas and liquid phases.The diverging angle has significant influence on the reentrant flow process and the performance of the bubble generator as well.Increasing the diverging angle results in the reentrant flow moving further forward to the upstream and intensifies the interaction between the two phases.As a consequence,the breakup or collapse of bubbles becomes more violent,whereby finer bubbles are generated.As such,the reentrant flow strongly links to the performance of the Venturi channel taken as a bubble generator,and that a moderate increase in the diverging angle can improve its performance without additional increase in flow resistance like that by increasing liquid flow rate.展开更多
基金performed in the scope of project ANR-12-ASTR-0017-03 "BF-DRAINH" in collaboration with the IRENav Laboratory (French Naval Academy,Brest,France) and the IMFT laboratory (Toulouse,France)
文摘Contrary to natural cavitation,ventilated cavitation is controllable and is not harmful.It is particularly used to reduce the drag of the hydraulic vehicles.The ventilated cavitation is characterized by various gas regimes.The mechanisms of ventilated cavitation are investigated in the present work with CFD based on a 2D solver.The attention is especially focused on the transition between the reentrant jet and twin vortex regimes.The results confirmthat the product of ventilated cavitation number and Froude number is lower than 1(σcFr<1)in the twin vortex regime,while it is higher than 1(σcFr>1)in the reentrant jet regime,as reported in the literature.Further analysis shows that ventilated cavitation is significantly influenced by the natural cavitation number.
基金National Key Basic Research Special Foundation of China(2015CB057301)
文摘To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.
基金supported by the National Natural Science Foundation of China (Grants 51709191, 51606130, and 51506099)
文摘A visualized investigation was carried out on the effect of the diverging angle on the bubble motion and interfacial behavior in a Venturi-type bubble generator.It was found two or three large vortexes formed in the diverging section,resulting in strong reentrant jet flow in the front of the bubbles or slugs rushing out of the throat.The jet flow in return bumps into the ongoing bubbles or slugs,leading to strong interaction between the gas and liquid phases.The diverging angle has significant influence on the reentrant flow process and the performance of the bubble generator as well.Increasing the diverging angle results in the reentrant flow moving further forward to the upstream and intensifies the interaction between the two phases.As a consequence,the breakup or collapse of bubbles becomes more violent,whereby finer bubbles are generated.As such,the reentrant flow strongly links to the performance of the Venturi channel taken as a bubble generator,and that a moderate increase in the diverging angle can improve its performance without additional increase in flow resistance like that by increasing liquid flow rate.