This paper proposes a novel integrated guidance and control(IGC)method combining dynamic surface control(DSC)and active disturbance rejection control(ADRC)for the guidance and control system of hypersonic reentry miss...This paper proposes a novel integrated guidance and control(IGC)method combining dynamic surface control(DSC)and active disturbance rejection control(ADRC)for the guidance and control system of hypersonic reentry missile(HRM)with bounded uncertainties.First,the model of HRM is established.Second,the proposed IGC method based on DSC and ADRC is designed.The stability of closed-loop system is proved strictly.It is worth mentioning that the ADRC technique is used to estimate and compensate the disturbance in the proposed IGC system.This makes the closed-loop system a better performance and reduces the chattering caused by lumped disturbances.Finally,a series of simulations and comparisons with a 6-DOF non-linear missile that includes all aerodynamic effects are demonstrated to illustrate the effectiveness and advantage of the proposed IGC method.展开更多
基金funded in part by the National Natural Science Foundation of China under Grant 91216304。
文摘This paper proposes a novel integrated guidance and control(IGC)method combining dynamic surface control(DSC)and active disturbance rejection control(ADRC)for the guidance and control system of hypersonic reentry missile(HRM)with bounded uncertainties.First,the model of HRM is established.Second,the proposed IGC method based on DSC and ADRC is designed.The stability of closed-loop system is proved strictly.It is worth mentioning that the ADRC technique is used to estimate and compensate the disturbance in the proposed IGC system.This makes the closed-loop system a better performance and reduces the chattering caused by lumped disturbances.Finally,a series of simulations and comparisons with a 6-DOF non-linear missile that includes all aerodynamic effects are demonstrated to illustrate the effectiveness and advantage of the proposed IGC method.